Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要对Pandas的df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]等几种数据选取的方法进行介绍及对比总结。
Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。
Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式基本一致,本文主要以Dataframe为例进行介绍。
在Dataframe中选取数据大抵包括3中情况:
1)行(列)选取(单维度选取):df[]。
这种情况一次只能选取行或者列,即一次选取中,只能为行或者列设置筛选条件(只能为一个维度设置筛选条件)。
2)区域选取(多维选取):df.loc[],df.iloc[],df.ix[]。
这种方式可以同时为多个维度设置筛选条件。
3)单元格选取(点选取):df.at[],df.iat[]。
准确定位一个单元格。
接下来,我们以下面的数据为例,分别通过实例介绍这三种情况。
>>> import pandas as pd
>>> import numpy as np
>>> data = {'name': ['Joe', 'Mike', 'Jack', 'Rose', 'David', 'Marry', 'Wansi', 'Sidy', 'Jason', 'Even'],
'age': [25, 32, 18, np.nan, 15, 20, 41, np.nan, 37, 32],
'gender': [1, 0, 1, 1, 0, 1, 0, 0, 1, 0],
'isMarried': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
>>> labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
>>> df = pd.DataFrame(data, index=labels)
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
c Jack 18.0 1 no
d Rose NaN 1 yes
e David 15.0 0 no
f Marry 20.0 1 no
g Wansi 41.0 0 no
h Sidy NaN 0 yes
i Jason 37.0 1 no
j Even 32.0 0 no
2 行(列)选取:df[]
行(列)选取是在单一维度上进行数据的选取,即以行为单位进行选取或者以列为单位进行选取。Dataframe对象的行有索引(index),默认情况下是[0,1,2,……]的整数序列,也可以自定义添加另外的索引,例如上面的labels,(为区分默认索引和自定义的索引,在本文中将默认索引称为整数索引,自定义索引称为标签索引)。Dataframe对象的每一列都有列名,可以通过列名实现对列的选取。
1)选取行
选取行的方式包括三种:整数索引切片、标签索引切片和布尔数组。
a)整数索引切片:前闭后开
选取第一行:
>>> df[0:1]
name age gender isMarried
a Joe 25.0 1 yes
选取前两行:
>>> df[0:2]
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
b)标签索引切片:前闭后闭
选取第一行:
>>> df[:'a']
name age gender isMarried
a Joe 25.0 1 yes
选取前两行:
>>> df['a':'b']
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
注意
:整数索引切片是前闭后开,标签索引切片是前闭后闭,这点尤其要注意。
c)布尔数组
选取前三行
>>> df[[True,True,True,False,False,False,False,False,False,False]]
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
c Jack 18.0 1 no
选取所有age大于30的行
>>> df[[each>30 for each in df['age']]]
name age gender isMarried
b Mike 32.0 0 yes
g Wansi 41.0 0 no
i Jason 37.0 1 no
j Even 32.0 0 no
通过布尔数组的方式,又可以衍生出下面的选取方式:
选取所有age大于30的行
>>> df[df['age']>30]
name age gender isMarried
b Mike 32.0 0 yes
g Wansi 41.0 0 no
i Jason 37.0 1 no
j Even 32.0 0 no
选取出所有age大于30,且isMarried为no的行
>>> df[(df['age']>30) & (df['isMarried']=='no')]
name age gender isMarried
g Wansi 41.0 0 no
i Jason 37.0 1 no
j Even 32.0 0 no
选取出所有age为20或32的行
>>> df[(df['age']==20) | (df['age']==32)]
name age gender isMarried
b Mike 32.0 0 yes
f Marry 20.0 1 no
j Even 32.0 0 no
注意:像上面这种通过多个布尔条件判断的情况,多个条件最好(一定)用括号括起来,否则非常容易出错。
2)列选取
列选取方式也有三种:标签索引、标签列表、Callable对象
a)标签索引:选取单个列
选取name列所有数据
>>> df['name']
a Joe
b Mike
c Jack
d Rose
e David
f Marry
g Wansi
h Sidy
i Jason
j Even
Name: name, dtype: object
b)标签列表:选取多个列
选取name和age两列数据
>>> df[['name','age']]
name age
a Joe 25.0
b Mike 32.0
c Jack 18.0
d Rose NaN
e David 15.0
f Marry 20.0
g Wansi 41.0
h Sidy NaN
i Jason 37.0
j Even 32.0
c)callable对象
选取第一列
>>> df[lambda df: df.columns[0]]
a Joe
b Mike
c Jack
d Rose
e David
f Marry
g Wansi
h Sidy
i Jason
j Even
Name: name, dtype: object
3 区域选取
区域选取可以从多个维度(行和列)对数据进行筛选,可以通过df.loc[],df.iloc[],df.ix[]三种方法实现。采用df.loc[],df.iloc[],df.ix[]这三种方法进行数据选取时,方括号内必须有两个参数,第一个参数是对行的筛选条件,第二个参数是对列的筛选条件,两个参数用逗号隔开。
df.loc[],df.iloc[],df.ix[]的区别如下:
df.loc[]只能使用标签索引,不能使用整数索引,通过便签索引切边进行筛选时,前闭后闭。
df.iloc[]只能使用整数索引,不能使用标签索引,通过整数索引切边进行筛选时,前闭后开。;
df.ix[]既可以使用标签索引,也可以使用整数索引。
下面分别通过实例演示这三种方法。
3.1 df.loc[]
1)对行进行选取
选取索引为‘a’的行:
>>> df.loc['a', :]
name Joe
age 25
gender 1
isMarried yes
Name: a, dtype: object
选取索引为‘a’或‘b’或‘c’的行
>>> df.loc[['a','b','c'], :]
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
c Jack 18.0 1 no
选取从‘a’到‘d’的所有行(包括‘d’行)
>>> df.loc['a':'d', :]
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
c Jack 18.0 1 no
d Rose NaN 1 yes
用布尔数组选取前3行
>>> df.loc[[True,True,True,False,False,False], :]
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
c Jack 18.0 1 no
选取所有age大于30的行
>>> df.loc[df['age']>30,:]
name age gender isMarried
b Mike 32.0 0 yes
g Wansi 41.0 0 no
i Jason 37.0 1 no
j Even 32.0 0 no
也可以使用下面两方法:
>>> df.loc[df.loc[:,'age']>30, :]
name age gender isMarried
b Mike 32.0 0 yes
g Wansi 41.0 0 no
i Jason 37.0 1 no
j Even 32.0 0 no
>>> df.loc[df.iloc[:,1]>30, :]
name age gender isMarried
b Mike 32.0 0 yes
g Wansi 41.0 0 no
i Jason 37.0 1 no
j Even 32.0 0 no
用callable对象选取age大于30的所有行
>>> df.loc[lambda df:df['age'] > 30, :]
name age gender isMarried
b Mike 32.0 0 yes
g Wansi 41.0 0 no
i Jason 37.0 1 no
j Even 32.0 0 no
2)对列选取
输出所有人的姓名(选取name列)
>>> df.loc[:, 'name']
a Joe
b Mike
c Jack
d Rose
e David
f Marry
g Wansi
h Sidy
i Jason
j Even
Name: name, dtype: object
输出所有人的姓名和年龄(选取name和age列)
>>> df.loc[:, 'name':'age']
name age
a Joe 25.0
b Mike 32.0
c Jack 18.0
d Rose NaN
e David 15.0
f Marry 20.0
g Wansi 41.0
h Sidy NaN
i Jason 37.0
j Even 32.0
输出所有人的姓名、年龄、婚否(选取name、age、isMarried列)
>>> df.loc[:, ['name','age','isMarried']]
name age isMarried
a Joe 25.0 yes
b Mike 32.0 yes
c Jack 18.0 no
d Rose NaN yes
e David 15.0 no
f Marry 20.0 no
g Wansi 41.0 no
h Sidy NaN yes
i Jason 37.0 no
j Even 32.0 no
用布尔数组的方式选取前3列
>>> df.loc[:, [True,True,True,False]]
name age gender
a Joe 25.0 1
b Mike 32.0 0
c Jack 18.0 1
d Rose NaN 1
e David 15.0 0
f Marry 20.0 1
g Wansi 41.0 0
h Sidy NaN 0
i Jason 37.0 1
j Even 32.0 0
3)同时对行和列进行筛选
输出年龄大于30的人的姓名和年龄
>>> df.loc[df['age']>30,['name','age']]
name age
b Mike 32.0
g Wansi 41.0
i Jason 37.0
j Even 32.0
输出行名为‘Mike’或‘Marry’的姓名和年龄
>>> df.loc[(df['name']=='Mike') |(df['name']=='Marry'),['name','age']]
name age
b Mike 32.0
f Marry 20.0
3.2 df.iloc[]
1)行选取
选取第2行
>>> df.iloc[1, :]
name Mike
age 32
gender 0
isMarried yes
Name: b, dtype: object
选取前3行
>>> df.iloc[:3, :]
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
c Jack 18.0 1 no
选取第2行、第4行、第6行
>>> df.iloc[[1,3,5],:]
name age gender isMarried
b Mike 32.0 0 yes
d Rose NaN 1 yes
f Marry 20.0 1 no
通过布尔数组选取前3行
>>> df.iloc[[True,True,True,False,False,False], :]
name age gender isMarried
a Joe 25.0 1 yes
b Mike 32.0 0 yes
c Jack 18.0 1 no
2)列选取
选取第2列
>>> df.iloc[:, 1]
a 25.0
b 32.0
c 18.0
d NaN
e 15.0
f 20.0
g 41.0
h NaN
i 37.0
j 32.0
Name: age, dtype: float64
选取前3列
>>> df.iloc[:, 0:3]
name age gender
a Joe 25.0 1
b Mike 32.0 0
c Jack 18.0 1
d Rose NaN 1
e David 15.0 0
f Marry 20.0 1
g Wansi 41.0 0
h Sidy NaN 0
i Jason 37.0 1
j Even 32.0 0
l 选取第1列、第3列、第4列
选取第1列、第3列和第4列
>>> df.iloc[:, [0,2,3]]
name gender isMarried
a Joe 1 yes
b Mike 0 yes
c Jack 1 no
d Rose 1 yes
e David 0 no
f Marry 1 no
g Wansi 0 no
h Sidy 0 yes
i Jason 1 no
j Even 0 no
通过布尔数组选取前3列
>>> df.iloc[:,[True,True,True,False]]
name age gender
a Joe 25.0 1
b Mike 32.0 0
c Jack 18.0 1
d Rose NaN 1
e David 15.0 0
f Marry 20.0 1
g Wansi 41.0 0
h Sidy NaN 0
i Jason 37.0 1
j Even 32.0 0
3)同时选取行和列
选取第2行的第1列、第3列、第4列
>>> df.iloc[1, [0,2,3]]
name Mike
gender 0
isMarried yes
Name: b, dtype: object
选取前3行的前3列
>>> df.iloc[:3, :3]
name age gender
a Joe 25.0 1
b Mike 32.0 0
c Jack 18.0 1
3.3 df.ix[]
df.ix[]既可以通过整数索引进行数据选取,也可以通过标签索引进行数据选取,换句话说,df.ix[]是df.loc[]和df.iloc[]的功能集合,且在同义词选取中,可以同时使用整数索引和标签索引。
选取第3行的name数据
>>> df.ix[2,'name']
'Jack'
选取a行、c行的第1列,第2列和第4列数据
>>> df.ix[['a','c'], [0,1,3]]
name age isMarried
a Joe 25.0 yes
c Jack 18.0 no
选取所有未婚者的姓名和年龄
>>> df.ix[df['isMarried']=='no',['name','age']]
name age
c Jack 18.0
e David 15.0
f Marry 20.0
g Wansi 41.0
i Jason 37.0
j Even 32.0
4 单元格选取
单元格选取包括df.at[]和df.iat[]两种方法。df.at[]和df.iat[]使用时必须输入两个参数,即行索引和列索引,其中df.at[]只能使用标签索引,df.iat[]只能使用整数索引。df.at[]和df.iat[]选取的都是单个单元格(单行单列),所以返回值都为基本数据类型。
4.1 df.at[]
选取b行的name列
>>> df.at['b','name']
'Mike'
4.2 df.iat[]
选取第2行第1列
>>> df.iat[1,0]
'Mike'
5 拓展与总结
1)选取某一整行(多个整行)或某一整列(多个整列)数据时,可以用df[]、df.loc[]、df.iloc[],此时df[]的方法书写要简单一些。
2)进行区域选取时,如果只能用标签索引,则使用df.loc[]或df.ix[],如果只能用整数索引,则用df.iloc[]或df.ix[]。不过我看到有资料说,不建议使用df.ix[],因为df.loc[]和df.iloc[]更精确(有吗?我没理解精确在哪,望告知)。
3)如果选取单元格,则df.at[]、df.iat[]、df.loc[]、df.iloc[]都可以,不过要注意参数。
4)选取数据时,返回值存在以下情况:
如果返回值包括单行多列或多行单列时,返回值为Series对象;
如果返回值包括多行多列时,返回值为DataFrame对象;
如果返回值仅为一个单元格(单行单列)时,返回值为基本数据类型,例如str,int等。
5)df[]的方式只能选取行和列数据,不能精确到单元格,所以df[]的返回值一定DataFrame或Series对象。
6)当使用DataFrame的默认索引(整数索引)时,整数索引即为标签索引。例如,使用上面的data实例化一个DataFrame对象:
>>> df2 = pd.DataFrame(data)
>>> df2.loc[1,'name']
'Mike'
>>> df2.iloc[1,0]
'Mike'