添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jul 20; 41(7): 988–994.
PMCID: PMC8329668

Language: Chinese | English

冠状动脉最大面积狭窄率联合冠周脂肪CT衰减指数可预测冠状动脉血流动力学异常

Value of maximum area stenosis combined with perivascular fat attenuation index in predicting hemodynamically significant coronary artery disease

单 冬凯

中国人民解放军总医院第六医学中心心血管病医学部,北京 100048, Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China

Find articles by 单 冬凯

王 更新

中国人民解放军总医院京西医疗区为公桥门诊部,北京 100089, Weigongqiao Outpatient Department, Western Medical District of Chinese PLA General Hospital, Beijing 100089, China

Find articles by 王 更新

王 玺

中国人民解放军总医院第六医学中心心血管病医学部,北京 100048, Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China

Find articles by 王 玺

丁 熠璞

中国人民解放军总医院第六医学中心心血管病医学部,北京 100048, Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China 南开大学医学院,天津 300071, School of Medicine, Nankai University, Tianjin 300071, China

Find articles by 丁 熠璞

陈 韵岱

中国人民解放军总医院第六医学中心心血管病医学部,北京 100048, Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China

Find articles by 陈 韵岱

杨 俊杰

中国人民解放军总医院第六医学中心心血管病医学部,北京 100048, Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China 中国人民解放军总医院第六医学中心心血管病医学部,北京 100048, Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China 中国人民解放军总医院京西医疗区为公桥门诊部,北京 100089, Weigongqiao Outpatient Department, Western Medical District of Chinese PLA General Hospital, Beijing 100089, China 南开大学医学院,天津 300071, School of Medicine, Nankai University, Tianjin 300071, China LAD: Left anterior descending; LCX: Left circumflex artery; RCA: Right coronary artery; MDS: Maximum diameter stenosis; MAS: Maximum area stenosis; TPB: Total plaque burden; FAI: Fat attenuation index; CT-FFR: Fractional flow reserve.Lesions distribution (n, %)  LAD89(71.8)32 (86.5)57 (65.5)0.018  LCX10(8.1)1 (2.7)9 (10.3)0.279  RCA25 (20.2)4 (10.8)21 (24.1)0.091CACS/vessel43.3 (2.4, 168.2)85.8 (6.8, 234.1)42.5 (0.6, 110.2)0.024Lesion length (mm)24.8±10.727.8±12.823.5±9.50.075MDS (%)59.6±10.063.8±9.957.6±9.50.003MAS (%)67.9±9.573.3±9.465.5±8.70.000TPB (%)54.7±12.358.2±11.353.1±12.50.042Perivascular FAI(HU)-78.4±8.8-73.3±9.5-80.6±7.50.000CT-FFR0.83±0.060.77±0.040.86±0.040.000Invasive FFR0.83±0.100.71±0.090.87±0.040.000

在单因素logistic回归中,对应血管的CACS、MAS、TPB和冠周FAI等指标,与血流动力学异常存在关联;多因素logistic回归显示,MAS(OR: 1.130,1.035~ 1.233, P =0.006)和冠周FAI(OR: 1.152,1.075~1.235, P < 0.01)是血流动力学异常的独立预测因素( 表 3 )。

3

单因素和多因素logistic回归分析血流动力学异常的预测因素

Univariate and multivariate logistic regression analysis of the predictors of hemodynamic abnormality

Indicators Univariable Multivariable
OR 95% CI OR 95% CI
CACS/vessel 1.003 1.001-1.006 0.013* 1.003 0.999-1.007 0.110
MAS 1.1.6 1.051-1.163 0.000* 1.130 1.063-1.201 0.000
TPB 1.037 1.001-1.074 0.045* 1.040 0.990-1.093 0.117
Perivascular FAI 1.112 1.055-1.171 0.000* 1.142 1.065-1.226 0.000

2.3. 各冠脉斑块影像学指标在血流动力学异常方面的诊断效能

CT-FFR具有最高的诊断效能,AUC达到0.909(0.844~0.953),而MAS和冠周FAI次之,分别为0.764(0.679~0.835)和0.723(0.636~0.800)( 表 4 )。多种指标绘制的ROC曲线( 图 1 )显示两种具有最大AUC的指标——MAS和冠周FAI两者之间的诊断效能无显著统计学差异(AUC: 0.764 vs . 0.723, P =0.797)。MAS联合冠周FAI可得到较为肯定的诊断效能,AUC达到0.818(0.738~0.881),联合指标诊断的准确率、敏感性、特异性、PPV、NPV分别为81.45%、75.68%、83.91%、66.7% 和89.0%。将此联合指标与CT-FFR同时绘制ROC曲线进行对比,二者之间无显著统计学差异( P =0.076, 图 2 )。MAS联合冠周FAI预测冠脉血流动力学异常的示例( 图 3 )。

4

冠脉影像学指标在血流动力学异常方面的诊断效能

Diagnostic performance of coronary imaging indicators for hemodynamic abnormality

Indicators Accuracy Sensitivity Specitivity PPV NPV Cut-off AUC (95% CI )
CACS/vessel 69.35 48.65 78.16 48.6 78.2 111.4 0.628 (0.537-0.713)
Lesion length 70.16 29.73 87.36 50.0 74.5 34.56 0.588 (0.496-0.676)
MDS 66.13 79.41 56.76 45.8 85.7 59.18 0.675 (0.578-0.762)
MAS 77.42 72.97 79.31 60.0 87.3 69.23 0.764 (0.679-0.835)
TPB 67.74 50.00 72.37 43.2 77.5 58.56 0.601 (0.503-0.694)
Perivascular FAI 73.39 59.46 80.46 56.4 82.4 -74.26 0.723 (0.636-0.800)
CT-FFR 81.45 97.30 74.71 62.1 98.5 0.83 0.909 (0.844-0.953)
MAS+Perivascular FAI 81.45 75.68 83.91 66.7 89.0 0.32 0.818 (0.738-0.881)
An external file that holds a picture, illustration, etc. Object name is nfykdxxb-41-7-988-1.jpg

冠周FAI与CCTA影像学指标在血流动力学异常方面的诊断效能对比

Comparison of diagnostic performance of CCTA indicators and perivascular FAI for hemodynamic abnormality. MAS vs. perivascular FAI.

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-41-7-988-2.jpg

MAS联合冠周FAI与基于机器学习的CT-FFR在血流动力学异常方面的诊断效能对比

Comparison of MAS combined with perivascular FAI with CT-FFR based on machine learning in the diagnosis of hemodynamic abnormality.

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-41-7-988-3.jpg

CCTA指标预测冠脉血流动力学异常示意图

A representative case showing the prediction of coronary hemodynamic abnormality using CCTA indicators. A : A 70-year-old female patient presented with severe stenosis of the proximal LAD segment (CAD-RADS: 4A). B : The FAI value was -63.16 HU based on CCTAimages. C - E : The MAS was 83.3%. F : CT-FFR of the distal stenosis was 0.75. G : The invasive FFR was 0.73.

3. 讨论

本研究发现在诊断预测冠脉病变特异性血流动力学异常方面,MAS和冠周FAI均具有较高的诊断效能;联合两指标的诊断效能具有增量价值,与CT-FFR的对比无显著统计学差异,表明这两种指标联合在诊断冠脉病变特异性缺血异常方面具有较好的临床价值。

冠周FAI是近年发现的反映血管活动性炎症状态的新型CCTA影像学指标,冠周FAI的升高与冠脉的炎症密切相关 [ 9 , 11 , 12 ] 。一方面,炎性信号可以抑制血管外脂肪的蓄积,抑制脂肪细胞的分化、成熟和脂肪化;另一方面,血管的炎症与内皮功能的紊乱存在密切关联 [ 18 ] 。当冠脉血管存在异常的动脉粥样硬化斑块导致的狭窄时,可能借由炎症信号,导致血管外的脂肪发生病理改变,这就能够解释为何升高的冠周FAI可能与FFR的降低有关。血管炎症反应导致了血管周围脂肪组织产生了从脂肪相到水相的变化,这种组织差异可以通过CCTA的CT值检测到 [ 9 ] 。既往研究发现,冠周FAI联合直径狭窄率、总斑块体积,可以较好地预测有临床意义的冠脉狭窄,具有较高的诊断准确率 [ 13 ] 。这与我们的研究结果一致,在应用冠周FAI进行血流动力学异常的诊断时,此指标具备了良好的诊断效能,AUC达到0.723;不同的是,虽然诊断特异性达到了80.46%,但敏感性仅有59.46%,与前述研究相反,这可能是由于本研究样本量小、研究人群是行ICA和有创FFR的CAD高危人群等原因导致。

冠脉解剖学狭窄与血流动力学异常之间存在一定的关联,但结果并不完全吻合 [ 19 ] ,功能学异常受到较多因素的影响,如病变弥漫程度、斑块内部成分、内皮功能情况、冠脉痉挛和微循环障碍等,而非仅有管腔狭窄 [ 14 , 20 - 23 ] 。FAME研究发现,即使达到中度以上狭窄,仍有65%的患者并不存在病变特异性的血流动力学异常 [ 24 ] ,因此在解剖学发现的中度狭窄的患者中,预测功能学异常是当前研究者重点关注的问题,决定着后续临床决策和患者远期预后。在预测血流动力学异常方面,传统的冠脉狭窄指标可以得到较高的准确率,如直径狭窄率、面积狭窄率和斑块体积等 [ 25 , 26 ] 。在本研究中,MAS的诊断效能优于MDS和TPB,可能在于MAS较MDS能够提供更多的血管特征信息,MDS只能反映目标病变横断面最严重的直径狭窄信息,对于部分弥漫、分叉、偏心和重度钙化病变评估方面存在局限,与既往研究结果相似 [ 26 ] ;而另一方面,TPB虽然是斑块的三维立体结构的反映,但在测量上受影响因素较多,如血管的体积、图像的伪影、斑块内部成分非均质性等,均有可能对测量带来潜在影响,测量流程较为繁琐,应用价值也不高。由此来看,MAS在预测血流动力学异常方面更加准确,而且测量稳定可靠,同时在实际临床应用中较为简便,具备一定的应用优势。

本研究中,我们发现了冠周FAI与MAS是诊断效能最高的两种CCTA影像学指标,因此探索性的将两种指标结合,对比联合指标与CT-FFR的诊断效能。结果显示,联合指标与CT-FFR的诊断效能无显著统计学差异,这表明了即使是单纯的影像学表现也可在一定程度上综合反映冠脉压力阶差变化。由于冠脉狭窄容易受到CCTA图像质量和钙化容积效应的影响,易高估病变 [ 4 ] ,而冠周FAI不受钙化斑块影响,可间接反映血管炎症状态,测量结果相对稳定,因此血管内外两种指标的联合可能带来更好的诊断预测效能。在既往研究中已经发现CT-FFR在冠脉血流动力学异常方面具有较高的诊断准确率,与有创FFR结果高度一致 [ 5 - 8 ] ,因此,与之基本等效的联合指标也可被认为是一种较为理想、可信的诊断指标。更为重要的是,虽然CT-FFR的准确性和可行性已经被大量临床注册研究所证实,但其推广应用仍然存在局限,测量需要专用软件平台、测量时间仍然较长、费用较高 [ 16 , 27 ] 。简单、便捷、易于获取和理解的影像学指标在应用上具有更多的潜在价值。

我们通过单因素分析也比较了部分CCTA影像指标,发现对应血管CACS在血流动力学异常组明显较高,这与前述研究相一致 [ 28 , 29 ] 。冠脉钙化从形态上,可以分为大钙化与小钙化,小钙化与冠脉斑块的易损性相关,预示着斑块内部存在活动性炎症和坏死核心等,而大钙化则多数与后期病变趋于稳定有关联 [ 30 , 31 ] ,这也就可以解释为何在多因素分析中,笼统的CACS并不能发现与血流动力学异常之间的关联。此外,在单因素分析中,血流动力学异常组的病变长度均值虽然高于正常组,但两组并无统计学差异,这反映了单独病变弥漫程度不能预测功能学异常与否,符合我们的临床认知。然而,即使此结果也不能完全否认这些影像学指标在诊断血流动力学异常方面的重要性,对于冠心病中低危人群,这些指标与狭窄程度存在关联,并且与患者的心血管预后直接相关,如MESA研究发现,钙化积分可以在传统心血管危险因素基础上,提高对缺血事件的预测价值 [ 32 ] 。对这些指标的充分探索和应用,还需要建立在更大样本量的前瞻性研究的基础之上。

Biography

单冬凯,博士,主治医师,E-mail: moc.361@4321iakgnodnahs

Funding Statement

国家重点研发计划(2016YFC1300304),北京市科技新星计划(Z181100006218055),北京力生心血管健康基金会领航基金重点项目

References

1. Timmis A, Townsend N, Gale C, et al. European society of cardiology: cardiovascular disease statistics 2017. Eur Heart J. 2018; 39 (7):508–79. doi: 10.1093/eurheartj/ehx628.
[Timmis A, Townsend N, Gale C, et al. European society of cardiology: cardiovascular disease statistics 2017[J]. Eur Heart J, 2018, 39(7): 508-79.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Task Force Members, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the european society of cardiology. Eur Heart J. 2013; 34 (38):2949–3003. doi: 10.1093/eurheartj/eht296.
[Task Force Members, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the european society of cardiology[J]. Eur Heart J, 2013, 34(38): 2949-3003.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Chen YD, Fang WY, Chen JY, et al. Chinese expert consensus on the non-invasive imaging examination pathways of stable coronary artery disease. http://www.ixueshu.com/api/search/info/a1a89c49bc6bff804cd947eba48d91c7318947a18e7f9386.html . J Geriatr Cardiol. 2018; 15 (1):30–40.
[Chen YD, Fang WY, Chen JY, et al. Chinese expert consensus on the non-invasive imaging examination pathways of stable coronary artery disease[J]. J Geriatr Cardiol, 2018, 15(1): 30-40.] [ PMC free article ] [ PubMed ] [ Google Scholar ]
4. Schmermund A, Eckert J, Schmidt M, et al. Coronary computed tomography angiography: a method coming of age. http://europepmc.org/abstract/MED/29974195 . Clin Res Cardiol. 2018; 107 (Suppl 2):40–8.
[Schmermund A, Eckert J, Schmidt M, et al. Coronary computed tomography angiography: a method coming of age[J]. Clin Res Cardiol, 2018, 107(Suppl 2): 40-8.] [ PubMed ] [ Google Scholar ]
5. Douglas PS, de Bruyne B, Pontone G, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. JAm Coll Cardiol. 2016; 68 (5):435–45. doi: 10.1016/j.jacc.2016.05.057.
[Douglas PS, de Bruyne B, Pontone G, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study[J]. J Am Coll Cardiol, 2016, 68(5): 435-45.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol. 2011; 58 (19):1989–97. doi: 10.1016/j.jacc.2011.06.066.
[Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study[J]. J Am Coll Cardiol, 2011, 58(19): 1989-97.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012; 308 (12):1237–45. doi: 10.1001/2012.jama.11274.
[Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography[J]. JAMA, 2012, 308(12): 1237-45.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: Next Steps) J Am Coll Cardiol. 2014; 63 (12):1145–55. doi: 10.1016/j.jacc.2013.11.043.
[Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: Next Steps) [J]. J Am Coll Cardiol, 2014, 63(12): 1145-55.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017; 9 (398):eaal2658. doi: 10.1126/scitranslmed.aal2658.
[Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat[J]. Sci Transl Med, 2017, 9(398): eaal2658.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Elnabawi YA, Oikonomou EK, Dey AK, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index. JAMA Cardiol. 2019; 4 (9):885–91. doi: 10.1001/jamacardio.2019.2589.
[Elnabawi YA, Oikonomou EK, Dey AK, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index[J]. JAMA Cardiol, 2019, 4(9): 885-91.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Dai X, Deng JH, Yu MM, et al. Perivascular fat attenuation index and high-risk plaque features evaluated by coronary CT angiography: relationship with serum inflammatory marker level. Int J Cardiovasc Imaging. 2020; 36 (4):723–30. doi: 10.1007/s10554-019-01758-8.
[Dai X, Deng JH, Yu MM, et al. Perivascular fat attenuation index and high-risk plaque features evaluated by coronary CT angiography: relationship with serum inflammatory marker level[J]. Int J Cardiovasc Imaging, 2020, 36(4): 723-30.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018; 392 (10151):929–39. doi: 10.1016/S0140-6736(18)31114-0.
[Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data[J]. Lancet, 2018, 392(10151): 929-39.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Yu MM, Dai X, Deng JH, et al. Diagnostic performance of perivascular fat attenuation index to predict hemodynamic significance of coronary stenosis: a preliminary coronary computed tomography angiography study. Eur Radiol. 2020; 30 (2):673–81. doi: 10.1007/s00330-019-06400-8.
[Yu MM, Dai X, Deng JH, et al. Diagnostic performance of perivascular fat attenuation index to predict hemodynamic significance of coronary stenosis: a preliminary coronary computed tomography angiography study[J]. Eur Radiol, 2020, 30(2): 673-81.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Yin PY, Dou GH, Yang X, et al. Noninvasive quantitative plaque analysis identifies hemodynamically significant coronary arteries disease. http://journals.lww.com/thoracicimaging/Abstract/2021/03000/Noninvasive_Quantitative_Plaque_Analysis.5.aspx . J Thorac Imaging. 2020:10.
[Yin PY, Dou GH, Yang X, et al. Noninvasive quantitative plaque analysis identifies hemodynamically significant coronary arteries disease[J]. J Thorac Imaging, 2020: 10.1097/RTI. 0000000000000494.] [ PubMed ] [ Google Scholar ]
15. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990; 15 (4):827–32. doi: 10.1016/0735-1097(90)90282-T.
[Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography[J]. J Am Coll Cardiol, 1990, 15(4): 827-32.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Yang JJ, Shan DK, Dong M, et al. The effect of on-site CT-derived fractional flow reserve on the management of decision making for patients with stable chest pain (TARGET trial): objective, rationale, and design. Trials. 2020; 21 (1):728. doi: 10.1186/s13063-020-04649-9.
[Yang JJ, Shan DK, Dong M, et al. The effect of on-site CT-derived fractional flow reserve on the management of decision making for patients with stable chest pain (TARGET trial): objective, rationale, and design[J]. Trials, 2020, 21(1): 728.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44 (3):837–45. doi: 10.2307/2531595.
[DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44(3): 837-45.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Grant RW, Stephens JM. Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. http://www.ncbi.nlm.nih.gov/pubmed/26058863 . Am J Physiol Endocrinol Metab. 2015; 309 (3):E205-13.
[Grant RW, Stephens JM. Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis[J]. Am J Physiol Endocrinol Metab, 2015, 309(3): E205-13.] [ PubMed ] [ Google Scholar ]
19. Tonino PA, de Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009; 360 (3):213–24. doi: 10.1056/NEJMoa0807611.
[Tonino PA, de Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention [J]. N Engl J Med, 2009, 360(3): 213-24.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Pasupathy S, Air T, Dreyer RP, et al. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation. 2015; 131 (10):861–70. doi: 10.1161/CIRCULATIONAHA.114.011201.
[Pasupathy S, Air T, Dreyer RP, et al. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries [J]. Circulation, 2015, 131(10): 861-70.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Eftekhari A, Min J, Achenbach S, et al. Fractional flow reserve derived from coronary computed tomography angiography: diagnostic performance in hypertensive and diabetic patients. Eur Heart J Cardiovasc Imaging. 2017; 18 (12):1351–60. doi: 10.1093/ehjci/jew209.
[Eftekhari A, Min J, Achenbach S, et al. Fractional flow reserve derived from coronary computed tomography angiography: diagnostic performance in hypertensive and diabetic patients[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(12): 1351-60.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Doris MK, Otaki Y, Arnson Y, et al. Non-invasive fractional flow reserve in vessels without severe obstructive Stenosis is associated with coronary plaque burden. J Cardiovasc Comput Tomogr. 2018; 12 (5):379–84. doi: 10.1016/j.jcct.2018.05.003.
[Doris MK, Otaki Y, Arnson Y, et al. Non-invasive fractional flow reserve in vessels without severe obstructive Stenosis is associated with coronary plaque burden[J]. J Cardiovasc Comput Tomogr, 2018, 12(5): 379-84.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Ahmadi N, Ruiz-Garcia J, Hajsadeghi F, et al. Impaired coronary artery distensibility is an endothelium-dependent process and is associated with vulnerable plaque composition. Clin Physiol Funct Imaging. 2016; 36 (4):261–8. doi: 10.1111/cpf.12220.
[Ahmadi N, Ruiz-Garcia J, Hajsadeghi F, et al. Impaired coronary artery distensibility is an endothelium-dependent process and is associated with vulnerable plaque composition[J]. Clin Physiol Funct Imaging, 2016, 36(4): 261-8.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Tonino PA, Fearon WF, de Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. JAm Coll Cardiol. 2010; 55 (25):2816–21. doi: 10.1016/j.jacc.2009.11.096.
[Tonino PA, Fearon WF, de Bruyne B, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation [J]. J Am Coll Cardiol, 2010, 55(25): 2816-21.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Nakazato R, Shalev A, Doh JH, et al. Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate Stenosis severity. J Am Coll Cardiol. 2013; 62 (5):460–7. doi: 10.1016/j.jacc.2013.04.062.
[Nakazato R, Shalev A, Doh JH, et al. Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate Stenosis severity[J]. J Am Coll Cardiol, 2013, 62(5): 460-7.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Chung WY, Choi BJ, Lim SH, et al. Three dimensional quantitative coronary angiography can detect reliably ischemic coronary lesions based on fractional flow reserve. J Korean Med Sci. 2015; 30 (6):716–24. doi: 10.3346/jkms.2015.30.6.716.
[Chung WY, Choi BJ, Lim SH, et al. Three dimensional quantitative coronary angiography can detect reliably ischemic coronary lesions based on fractional flow reserve[J]. J Korean Med Sci, 2015, 30(6): 716-24.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Fairbairn TA, Nieman K, Akasaka T, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018; 39 (41):3701–11. doi: 10.1093/eurheartj/ehy530.
[Fairbairn TA, Nieman K, Akasaka T, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry[J]. Eur Heart J, 2018, 39(41): 3701-11.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Nørgaard BL, Gaur S, Leipsic J, et al. Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: a substudy of the NXT trial. JACC Cardiovasc Imaging. 2015; 8 (9):1045–55. doi: 10.1016/j.jcmg.2015.06.003.
[Nørgaard BL, Gaur S, Leipsic J, et al. Influence of coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: a substudy of the NXT trial [J]. JACC Cardiovasc Imaging, 2015, 8(9): 1045-55.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. Jiang M, Zhang XL, Liu H, et al. The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR: a Chinese multicenter study. Eur Radiol. 2021; 31 (3):1482–93. doi: 10.1007/s00330-020-07261-2.
[Jiang M, Zhang XL, Liu H, et al. The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR: a Chinese multicenter study[J]. Eur Radiol, 2021, 31(3): 1482-93.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and regression. J Atheroscler Thromb. 2018; 25 (4):294–303. doi: 10.5551/jat.RV17020.
[Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and regression[J]. J Atheroscler Thromb, 2018, 25(4): 294-303.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. 陈 彦汝, 言 述, 修 志刚, et al. 同步12导联动态心电图联合螺旋CT可提高对冠脉血管病变程度的诊断效能 http://www.j-fzyx.com/article/doi/10.12122/j.issn.1674-4500.2021.01.15 . 分子影像学杂志 2021; 44 (1):78–82.
[陈彦汝, 言述, 修志刚, 等. 同步12导联动态心电图联合螺旋CT可提高对冠脉血管病变程度的诊断效能[J]. 分子影像学杂志, 2021, 44(1): 78-82.] [ Google Scholar ]
32. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008; 358 (13):1336–45. doi: 10.1056/NEJMoa072100.
[Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups[J]. N Engl J Med, 2008, 358(13): 1336-45.] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University