添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Learn more about Collectives

Teams

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Learn more about Teams

I am trying to implement a neural net in PyTorch but it doesn't seem to work. The problem seems to be in the training loop. I've spend several hours into this but can't get it right. Please help, thanks.

I haven't added the data preprocessing parts.

# importing libraries
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
# get x function (dataset related stuff)
def Getx(idx):
    sample = samples[idx]
    vector = Calculating_bottom(sample)
    vector = torch.as_tensor(vector, dtype = torch.float64)
    return vector
# get y function (dataset related stuff)
def Gety(idx):
    y = np.array(train.iloc[idx, 4], dtype = np.float64)
    y = torch.as_tensor(y, dtype = torch.float64)
    return y
# dataset
class mydataset(Dataset):
    def __init__(self):
        super().__init__()
    def __getitem__(self, index):
        x = Getx(index)
        y = Gety(index)
        return x, y
    def __len__(self):
        return len(train)
dataset = mydataset()
# sample dataset value
print(dataset.__getitem__(0))

(tensor([ 5., 5., 8., 14.], dtype=torch.float64), tensor(-0.3403, dtype=torch.float64))

# data-loader
dataloader = DataLoader(dataset, batch_size = 1, shuffle = True)
# nn architecture
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(4, 4)
        self.fc2 = nn.Linear(4, 2)
        self.fc3 = nn.Linear(2, 1)
    def forward(self, x):
        x = x.float()
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
model = Net()
# device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
# hyper-parameters
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
# training loop
for epoch in range(5):
    for batch in dataloader:
        # unpacking
        x, y = batch
        x.to(device)
        y.to(device)
        # reset gradients
        optimizer.zero_grad()
        # forward propagation through the network
        out = model(x)
        # calculate the loss
        loss = criterion(out, y)
        # backpropagation
        loss.backward()
        # update the parameters
        optimizer.step()

Error:

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/loss.py:446: UserWarning: Using a target size (torch.Size([1])) that is different to the input size (torch.Size([1, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
  return F.mse_loss(input, target, reduction=self.reduction)
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-18-3f68fcee9ff3> in <module>
     21         # backpropagation
---> 22         loss.backward()
     24         # update the parameters
/opt/conda/lib/python3.7/site-packages/torch/tensor.py in backward(self, gradient, retain_graph, create_graph)
    219                 retain_graph=retain_graph,
    220                 create_graph=create_graph)
--> 221         torch.autograd.backward(self, gradient, retain_graph, create_graph)
    223     def register_hook(self, hook):
/opt/conda/lib/python3.7/site-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables)
    130     Variable._execution_engine.run_backward(
    131         tensors, grad_tensors_, retain_graph, create_graph,
--> 132         allow_unreachable=True)  # allow_unreachable flag
RuntimeError: Found dtype Double but expected Float

You need the data type of the data to match the data type of the model.

Either convert the model to double (recommended for simple nets with no serious performance problems such as yours)

# nn architecture
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(4, 4)
        self.fc2 = nn.Linear(4, 2)
        self.fc3 = nn.Linear(2, 1)
        self.double()

or convert the data to float.

class mydataset(Dataset):
    def __init__(self):
        super().__init__()
    def __getitem__(self, index):
        x = Getx(index)
        y = Gety(index)
        return x.float(), y.float()
        

Thanks for contributing an answer to Stack Overflow!

  • Please be sure to answer the question. Provide details and share your research!

But avoid

  • Asking for help, clarification, or responding to other answers.
  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.