template<class IntType = int>
class uniform_int_distribution {
public:
// types
typedef IntType result_type;
struct param_type;
// constructors and reset functions
explicit uniform_int_distribution(
result_type a = 0, result_type b = numeric_limits<result_type>::max());
explicit uniform_int_distribution(const param_type& parm);
void reset();
// generating functions
template <class URNG>
result_type operator()(URNG& gen);
template <class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
Parameters
IntType
The integer result type, defaults to int
. For possible types, see <random>.
The class template describes an inclusive-inclusive distribution that produces values of a user-specified integral type with a distribution so that every value is equally probable. The following table links to articles about individual members.
uniform_int_distribution
param_type
The property member a()
returns the currently stored minimum bound of the distribution, while b()
returns the currently stored maximum bound. For this distribution class, these minimum and maximum values are the same as those returned by the common property functions min()
and max()
.
The property member param()
sets or returns the param_type
stored distribution parameter package.
The min()
and max()
member functions return the smallest possible result and largest possible result, respectively.
The reset()
member function discards any cached values, so that the result of the next call to operator()
does not depend on any values obtained from the engine before the call.
The operator()
member functions return the next generated value based on the URNG engine, either from the current parameter package, or the specified parameter package.
For more information about distribution classes and their members, see <random>.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const int a, const int b, const int s) {
// uncomment to use a non-deterministic seed
// std::random_device rd;
// std::mt19937 gen(rd());
std::mt19937 gen(1729);
std::uniform_int_distribution<> distr(a, b);
std::cout << "lower bound == " << distr.a() << std::endl;
std::cout << "upper bound == " << distr.b() << std::endl;
// generate the distribution as a histogram
std::map<int, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
for (const auto& elem : histogram) {
std::cout << std::setw(5) << elem.first << ' ' << std::string(elem.second, ':') << std::endl;
std::cout << std::endl;
int main()
int a_dist = 1;
int b_dist = 10;
int samples = 100;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter an integer value for the lower bound of the distribution: ";
std::cin >> a_dist;
std::cout << "Enter an integer value for the upper bound of the distribution: ";
std::cin >> b_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(a_dist, b_dist, samples);
Use CTRL-Z to bypass data entry and run using default values.
Enter an integer value for the lower bound of the distribution: 0
Enter an integer value for the upper bound of the distribution: 12
Enter an integer value for the sample count: 200
lower bound == 0
upper bound == 12
Distribution for 200 samples:
0 :::::::::::::::
1 :::::::::::::::::::::
2 ::::::::::::::::::
3 :::::::::::::::
4 :::::::
5 :::::::::::::::::::::
6 :::::::::::::
7 ::::::::::
8 :::::::::::::::
9 :::::::::::::
10 ::::::::::::::::::::::
11 :::::::::::::
12 :::::::::::::::::
Requirements
Header: <random>
Namespace: std
Constructs the distribution.
explicit uniform_int_distribution(
result_type a = 0, result_type b = std::numeric_limits<result_type>::max());
explicit uniform_int_distribution(const param_type& parm);
Parameters
The lower bound for random values, inclusive.
The upper bound for random values, inclusive.
The param_type
structure used to construct the distribution.
Precondition: a ≤ b
The first constructor constructs an object whose stored a value holds the value a and whose stored b value holds the value b.
The second constructor constructs an object whose stored parameters are initialized from parm. You can obtain and set the current parameters of an existing distribution by calling the param()
member function.
uniform_int_distribution::param_type
Stores the parameters of the distribution.
struct param_type {
typedef uniform_int_distribution<result_type> distribution_type;
param_type(
result_type a = 0, result_type b = std::numeric_limits<result_type>::max());
result_type a() const;
result_type b() const;
bool operator==(const param_type& right) const;
bool operator!=(const param_type& right) const;
Parameters
The lower bound for random values, inclusive.
The upper bound for random values, inclusive.
right
The param_type
object to compare to this.
Precondition: a ≤ b
This structure can be passed to the distribution's class constructor at instantiation, to the param()
member function to set the stored parameters of an existing distribution, and to operator()
to be used in place of the stored parameters.
See also
<random>