添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

从欠采样扩散MRI(dMRI)测量中准确重建集合平均传播器(EAPs)是dMRI采集和分析领域中一个积极进取,积极研究的问题。针对此问题,已经开发了许多基于压缩感测(CS)原理的方法,通过利用信号的稀疏表示,在采集中实现了可观的加速。文献中的最新方法将( k,q )空间中的欠采样技术应用于联合( x,r )空间中的EAP恢复。但是,这些方法大多数都遵循首先重建( x,q )空间,然后通过3D傅里叶变换估算EAP。在这项工作中,我们提出了一种新颖的方法来实现从部分( k,q )空间测量直接重建 P x,r ),其几何约束涉及从近端 q 空间的扩散图像的水平集的平行性点。通过直接从( k,q )重建 P x,r )) )空间数据,我们充分利用了6D感应域和重建域之间的不一致性,这与CS理论是一致的。此外,我们的方法旨在利用与CS框架中位于近端的 q 空间点相对应的扩散图像中的水平集的固有结构相似性(并行度),以实现样本复杂度的进一步降低,从而有助于在dMRI中更快地进行采集。我们所提出的方法进行比较的状态的最先进的CS基于EAP重建方法(从关节( K,Q )空间)上的模拟,幻和真实DMRI的数据表明在利用该结构相似的好处 q -空间。

Accurate reconstruction of the ensemble average propagators (EAPs) from undersampled diffusion MRI (dMRI) measurements is a well-motivated, actively researched problem in the field of dMRI acquisition and analysis. A number of approaches based on compressed sensing (CS) principles have been developed for this problem, achieving a considerable acceleration in the acquisition by leveraging sparse representations of the signal. Most recent methods in literature apply undersampling techniques in the ( k, q )-space for the recovery of EAP in the joint ( x, r )-space. Yet, the majority of these methods follow a pipeline of first reconstructing the diffusion images in the ( x, q )-space and subsequently estimating the EAPs through a 3D Fourier transform. In this work, we present a novel approach to achieve the direct reconstruction of P ( x, r ) from partial ( k, q )-space measurements, with geometric constraints involving the parallelism of level-sets of diffusion images from proximal q -space points. By directly reconstructing P ( x, r )) from ( k, q )-space data, we exploit the incoherence between the 6D sensing and reconstruction domains to the fullest, which is consistent with the CS-theory. Further, our approach aims to utilize the inherent structural similarity (parallelism) of the level-sets in the diffusion images corresponding to proximally-located q -space points in a CS framework to achieve further reduction in sample complexity that could facilitate faster acquisition in dMRI. We compare the proposed method to a state-of-the-art CS based EAP reconstruction method (from joint ( k, q )-space) on simulated, phantom and real dMRI data demonstrating the benefits of exploiting the structural similarity in the q -space.