添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

参考 https://zhuanlan.zhihu.com/p/37683646

2.与Global Max Pooling

都是压缩信息。只不过方式不同,SEnet实验证明,average稍微好一点

参考:https://www.zhihu.com/question/358913301/answer/922183264

3.与 Average Pooling

输入(H, W, C)

GAP输出:(1, 1, C):相当于信息压缩,关注全局特征

AP(after_pooling_size, after_pooling_size, C):信息提取,保留纹理信息,关注局部特征。

在数学关系上可以把GAP理解成AP的一种特例

4.torch 实现:

1.Global Average PoolingGlobal Average Pooling(GAP)出自 Network in networkGAP 输入(H, W, C)-->(1, 1, C)直接在HW上pooling,将信息压缩到一个点。优点:和FC相比无训练参数,所以可以防止过拟合参考https://zhuanlan.zhihu.com/p/376836...
https://www.zhihu.com/question/358913301 https://blog.csdn.net/qq_16234613/article/details/79520929 https://www.cnblogs.com/hutao722/p/10008581.html Adaptive Pool ing 可通过输入大小input_size自适应控制输出大小output_size, 而一般的Avg Pool ing / Max Pool ing 则是通过kernel_size、stride、padd ing 来计算output_size,公式如下: outputsize=ceil((inputsize+2∗padd ing −kernelsize)/stride)+1output_s
池化层简述池化层的分类最大/均值池化中值池化组合池化Spatial Pyramid Pool ing Global Average / Max Pool ing 参考文献   池化层( Pool ing Layer)是CNN中常见的一种操作,池化层通常也叫做子采样(subsampl ing )或降采样(Downsampl ing ),在构建CNN网络时,往往是用在卷积层之后,通过池化层来降低卷积层输出的特征维度,在有效减少网络参数的同时还可以防止过拟合现象。   说到池化操作,就会想到我们经常用的池化操作,即最大池化( Max
在一些论文中,我们可能会看到全局平均池化操作,但是我们从pytorch官方文档中却找不到这个API,那我们应该怎么办? 利用现有的 pool ing API实现全局平均池化的效果。 首先我们简单理解全局平均池化操作。 如果有一批特征图,其尺寸为 [ B, C, H, W], 我们经过全局平均池化之后,尺寸变为[B, C, 1, 1]。 也就是说,全局平均池化其实就是对每...
参考:https://blog.csdn.net/JN ing Wei/article/details/80064451(全局池化) https://blog.csdn.net/williamyi96/article/details/77530995( Global Average Pool ing 对全连接层的可替代性分析) https://blog.c...
If you want a global average pool ing layer, you can usenn.AdaptiveAvg Pool 2d(1). In Keras you can just use Global Average Pool ing 2D. Pytorch官方文档: torch.nn.AdaptiveAvg Pool 2d(output_size)[SOURCE] Appli...
假如特征图是512,7,7,要变成512,1,1,使用GAP avg pool = nn.Avg Pool 2d(7, stride=1) #Avg Pool 2d(kernel_size=7, stride=1, padd ing =0),kernel大小为7*7 avg pool = F.adaptive_avg_ pool 2d( feature _map, (1,1))
对于输入信号的输入通道,提供2维最大池化( max pool ing )操作 class torch.nn. Max Pool 2d(kernel_size, stride=None, padd ing =0, dilation=1, return_indices=False, ceil_mode=False) 参数kernel_size,stride, padd ing ,dilation数据类型: 可以是一个i...
1 Max Pool torch.nn. Max Pool 1d(kernel_size, stride=None, padd ing =0, dilation=1, return_indices=False, ceil_mode=False) torch.nn. Max Pool 2d(kernel_size, stride=None, padd ing =0, dilation=1, return_indices=...
对torch.nn. Max Pool 1d各参数(kernel_size、stride、ceil_mode、dilation、padd ing )的小白文分析:含官方定义和初步翻译、用代码测试并画图举例讲解各参数的作用。 另外讨论了torch.nn. Max Pool 1d与torch. max 的区别。
class ConvNet(nn.Module): def __init__(self, num_classes=10): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padd ing =1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padd ing =1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) self. pool 1 = nn. Max Pool 2d(kernel_size=2, stride=2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padd ing =1) self.bn3 = nn.BatchNorm2d(128) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padd ing =1) self.bn4 = nn.BatchNorm2d(128) self.relu4 = nn.ReLU(inplace=True) self. pool 2 = nn. Max Pool 2d(kernel_size=2, stride=2) self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padd ing =1) self.bn5 = nn.BatchNorm2d(256) self.relu5 = nn.ReLU(inplace=True) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padd ing =1) self.bn6 = nn.BatchNorm2d(256) self.relu6 = nn.ReLU(inplace=True) self. pool 3 = nn. Max Pool 2d(kernel_size=2, stride=2) self.avg pool = nn.AdaptiveAvg Pool 2d((1, 1)) self. fc = nn.Linear(256, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self. pool 1(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = self.conv4(x) x = self.bn4(x) x = self.relu4(x) x = self. pool 2(x) x = self.conv5(x) x = self.bn5(x) x = self.relu5(x) x = self.conv6(x) x = self.bn6(x) x = self.relu6(x) x = self. pool 3(x) x = self.avg pool (x) x = x.view(x.size(0), -1) x = self. fc (x) return x 该网络实现了6个卷积层,每个卷积层后跟一个 Batch Normalization 和一个 ReLU 层,经过两个卷积层后,特征的空间分辨率降低两倍,特征的 channel 数量提升两倍。在最后的输出层,使用 Global Average Pool ing 操作,把特征层转换为一个特征向量,然后使用全连接神经网络完成最终的预测。 Error when checking input: expected input_1 to have 3 dimensions, but got array with shape (37, 30) 22587 论文阅读DRIVEVLM: The Convergence of Autonomous Driving and Large Vision-Language Models CSDN-Ada助手: 你好,CSDN 开始提供 #论文阅读# 的列表服务了。请看:https://blog.csdn.net/nav/advanced-technology/paper-reading?utm_source=csdn_ai_ada_blog_reply 。如果你有更多需求,请来这里 https://gitcode.net/csdn/csdn-tags/-/issues/34?utm_source=csdn_ai_ada_blog_reply 给我们提。 docker/ nvidia-docker CSDN-Ada助手: 运维的工作内容是什么?有哪几种分类?