1.将
Median
Filtering
in
Constant
Time
的程序封装成
Dll
之后,用VC++和OpenCV(主要实现图像的读取)编程调用该
Dll
实现中值滤波。出现如下错误。
2.由于该程序的调整是在直接利用ctmf.h和ctmf.c文件的基础上,修改而来的,在工程文件没有删除ctmf.c文件的时候,系统是能够正常运行的,但是奇怪的事调用了
Dll
文件,并没有使用工程中的ctmf
文件中包含:
Median
Filter in
Constant
Time
.pdf
A fast
median
filter using AltiVec.pdf
ctmf.c
ctmf.h
参考资料下载:http://files.cnblogs.com/Imageshop/
Median
Filter.rar
主要参考论文:
Median
Filter in
Constant
Time
.pdf
参考代码:http://files.cnblogs.com/Imageshop/CTMF.rar
中值滤波是一种经典的图像操作,特别适用于椒盐噪音的去除。同样,他也是USM锐化(表示怀疑,我记得是高斯滤波)、顺序处理、形态学操作(比如去孤点)等
算法
的基础。更高级别的应用包括目标分割、语...
主要参考论文:
Median
Filter in
Constant
Time
.pdf
参考代码:http://files.cnblogs.com/Imageshop/CTMF.rar
中值滤波是一种经典的图像操作,特别适用于椒盐噪音的去除。同样,...
引导滤波:即需要引导图的滤波器,引导图可以是单独的图像或者是输入图像,当引导图为输入图像时,引导滤波就成为一个保持边缘的滤波操作,可以用于图像重建的滤波。
引导滤波的流程见下图:
假设输入图像为p,输出图像为q,引导图为I,q与I在以像素k为中心的窗口中存在局部线性关系:
窗口半径为r,a,b为线性系数,且在局部窗口k中为常数。这个模型保证了只有在I存在边缘的情况下,q才
Here's an example implementation of the relaxed
median
filter in Python using the NumPy library:
```python
import numpy as np
from scipy.signal import medfilt2d
def relaxed_
median
_filter(image, size, threshold):
# Create a copy of the input image
filtered_image = np.copy(image)
# Calculate the radius of the filter window
radius = (size - 1) // 2
# Iterate over each pixel in the image
for i in range(radius, image.shape[0] - radius):
for j in range(radius, image.shape[1] - radius):
# Extract the window of neighboring pixels
window = image[i - radius:i + radius + 1, j - radius:j + radius + 1]
# Calculate the
median
value of the window
median
= np.
median
(window)
# Calculate the range of values to consider
lower =
median
- threshold
upper =
median
+ threshold
# Create a boolean mask of the pixels within the range
mask = np.logical_and(window >= lower, window <= upper)
# Calculate the
median
value of the pixels within the range
filtered_image[i, j] = np.
median
(window[mask])
return filtered_image
This implementation uses the `np.
median
` function to calculate the
median
value of the window, and then applies a threshold to determine which neighboring pixels to consider when calculating the filtered pixel value. The `scipy.signal.medfilt2d` function is used as a reference to handle edge cases.