若您还不熟悉 TS,那本文可帮助您完成 TS 应用部分的学习,伴随众多 Demo 例来引导业务应用;
若您比较熟悉 TS,那本文可当作复习文,带您回顾知识,希望能在某些点引发您新发现和思考;
针对于 class 组件的 IState 和 IProps,类比 Hook 组件的部分写法和思考;
🌟🌟🌟TIPS:超好用的在线 TS 编辑器(诸多配置项可手动配置) 传送门:
TS 在线
🌟🌟🌟
一、什么是 TS
不扯晦涩的概念,通俗来说 TypeScript 就是 JavaScript 的超集,它具有可选的类型,并可以编译为纯 JavaScript 运行。(笔者一直就把 TypeScript 看作 JavaScript 的 Lint)那么问题来了,为什么 TS 一定要设计成静态的? 或者换句话说,我们为什么需要向 JavaScript 添加类型规范呢 ?
经典自问自答环节——因为它可以解决一些 JS 尚未解决的痛点:
JS 是动态类型的语言,这也意味着在实例化之前我们都不知道变量的类型,但是使用 TS 可以在运行前就避免经典低级错误。 例: Uncaught TypeError:'xxx' is not a function
⚠️ 典中典级别的错误🌰:
JS 就是这样,只有在运行时发生了错误才告诉我有错,但是当 TS 介入后:
好家伙!直接把问题在编辑器阶段抛出,nice!
懒人狂欢。 规范方便,又不容易出错,对于 VS Code,它能做的最多只是标示出有没有这个属性,但并不能精确的表明这个属性是什么类型,但 TS 可以通过类型推导/反推导(说白话:如果您未明确编写类型,则将使用类型推断来推断您正在使用的类型),从而完美优化了代码补全这一项:
第一个 Q&A——思考 :
那么我们还能想到在业务开发中 TS 解决了哪些 JS 的痛点呢?(提问)
回答,总结,补充:
-对函数参数的类型限制;
-对数组和对象的类型限制,避免定义出错 例如数据解构复杂或较多时,
可能会出现数组定义错误 a = { }, if (a.length){ // xxxxx }
-let functionA = 'jiawen' // 实际上 let functionA: string = 'jiawen'
使我们的应用代码更易阅读和维护,如果定义完善,可以通过类型大致明白参数的作用;
相信通过上述简单的bug-demo,各位已对TS有了一个初步的重新认识
接下来的章节便正式介绍我们在业务开发过程中如何用好TS
二、怎么用 TS
在业务中如何用TS/如何用好TS?这个问题其实和 " 在业务中怎么用好一个API " 是一样的。首先要知道这个东西在干嘛,参数是什么,规则是什么,能够接受有哪些扩展......等等。 简而言之,撸它!
TS 常用类型归纳
通过对业务中常见的 TS 错误做出的一个综合性总结归纳,希望 Demos 会对您有收获
元语(primitives)之 string number boolean
笔者把基本类型拆开的原因是: 不管是中文还是英文文档,primitives/元语/元组 这几个名词都频繁出镜,笔者理解的白话:希望在类型约束定义时,使用的是字面量而不是内置对象类型,官方文档:
let a: string = 'jiawen';
let flag: boolean = false;
let num: number = 150
interface IState: {
flag: boolean;
name: string;
num: number;
// 元组类型表示已知元素数量和类型的数组,各元素的类型不必相同,但是对应位置的类型需要相同。
let x: [string, number];
x = ['jiawen', 18]; // ok
x = [18, 'jiawen']; // Erro
console.log(x[0]); // jiawen
undefined null
let special: string = undefined
// 值得一提的是 undefined/null 是所有基本类型的子类,
// 所以它们可以任意赋值给其他已定义的类型,这也是为什么上述代码不报错的原因
object 和 { }
// object 表示的是常规的 Javascript对象类型,非基础数据类型
const offDuty = (value: object) => {
console.log("value is ", value);
offDuty({ prop: 0}) // ok
offDuty(null) offDuty(undefined) // Error
offDuty(18) offDuty('offDuty') offDuty(false) // Error
// {} 表示的是 非null / 非undefined 的任意类型
const offDuty = (value: {}) => {
console.log("value is ", value);
offDuty({ prop: 0}) // ok
offDuty(null) offDuty(undefined) // Error
offDuty(18) offDuty('offDuty') offDuty(false) // ok
offDuty({ toString(){ return 333 } }) // ok
// {} 和Object几乎一致,区别是Object会对Object内置的 toString/hasOwnPreperty 进行校验
const offDuty = (value: Object) => {
console.log("value is ", value);
offDuty({ prop: 0}) // ok
offDuty(null) offDuty(undefined) // Error
offDuty(18) offDuty('offDuty') offDuty(false) // ok
offDuty({ toString(){ return 333 } }) // Error
如果需要一个对象类型,但对属性没有要求,建议使用 object
{} 和 Object 表示的范围太大,建议尽量不要使用
object of params
// 我们通常在业务中可多采用点状对象函数(规定参数对象类型)
const offDuty = (value: { x: number; y: string }) => {
console.log("x is ", value.x);
console.log("y is ", value.y);
// 业务中一定会涉及到"可选属性";先简单介绍下方便快捷的“可选属性”
const offDuty = (value: { x: number; y?: string }) => {
console.log("必选属性x ", value.x);
console.log("可选属性y ", value.y);
console.log("可选属性y的方法 ", value.y.toLocaleLowerCase());
offDuty({ x: 123, y: 'jiawen' })
offDuty({ x: 123 })
// 提问: 上述代码有问题吗?
// offDuty({ x: 123 }) 会导致结果报错value.y.toLocaleLowerCase()
// Cannot read property 'toLocaleLowerCase' of undefined
方案1: 手动类型检查
const offDuty = (value: { x: number; y?: string }) => {
if (value.y !== undefined) {
console.log("可能不存在的 ", value.y.toUpperCase());
方案2:使用可选属性 (推荐)
const offDuty = (value: { x: number; y?: string }) => {
console.log("可能不存在的 ", value.y?.toLocaleLowerCase());
unknown 与 any
// unknown 可以表示任意类型,但它同时也告诉TS, 开发者对类型也是无法确定,做任何操作时需要慎重
let Jiaven: unknown
Jiaven.toFixed(1) // Error
if (typeof Jiaven=== 'number') {
Jiaven.toFixed(1) // OK
当我们使用any类型的时候,any会逃离类型检查,并且any类型的变量可以执行任意操作,编译时不会报错
anyscript === javascript
注意:any 会增加了运行时出错的风险,不到万不得已不要使用;
如果遇到想要表示【不知道什么类型】的场景,推荐优先考虑 unknown
union 联合类型
union也叫联合类型,由两个或多个其他类型组成,表示可能为任何一个的值,类型之间用 ' | '隔开
type dayOff = string | number | boolean
联合类型的隐式推导可能会导致错误,遇到相关问题请参考语雀 code and tips —— 《TS的隐式推导》
.值得注意的是,如果访问不共有的属性的时候,会报错,访问共有属性时不会.上个最直观的demo
function dayOff (value: string | number): number {
return value.length;
// number并不具备length,会报错,解决方法:typeof value === 'string'
function dayOff (value: string | number): number {
return value.toString();
// number和string都具备toString(),不会报错
never
// never是其它类型(包括 null 和 undefined)的子类型,代表从不会出现的值。
// 那never在实际开发中到底有什么作用? 这里笔者原汁原味照搬尤雨溪的经典解释来做第一个例子
第一个例子,当你有一个 union type:
interface Foo {
type: 'foo'
interface Bar {
type: 'bar'
type All = Foo | Bar
在 switch 当中判断 type,TS是可以收窄类型的 (discriminated union):
function handleValue(val: All) {
switch (val.type) {
case 'foo':
// 这里 val 被收窄为 Foo
break
case 'bar':
// val 在这里是 Bar
break
default:
// val 在这里是 never
const exhaustiveCheck: never = val
break
注意在 default 里面我们把被收窄为 never 的 val 赋值给一个显式声明为 never 的变量。
如果一切逻辑正确,那么这里应该能够编译通过。但是假如后来有一天你的同事改了 All 的类型:
type All = Foo | Bar | Baz
然而他忘记了在 handleValue 里面加上针对 Baz 的处理逻辑,
这个时候在 default branch 里面 val 会被收窄为 Baz,导致无法赋值给 never,产生一个编译错误。
所以通过这个办法,你可以确保 handleValue 总是穷尽 (exhaust) 了所有 All 的可能类型。
第二个用法 返回值为 never 的函数可以是抛出异常的情况
function error(message: string): never {
throw new Error(message);
第三个用法 返回值为 never 的函数可以是无法被执行到的终止点的情况
function loop(): never {
while (true) {}
interface IProps {
onOK: () => void
void 和 undefined 功能高度类似,但void表示对函数的返回值并不在意或该方法并无返回值
笔者认为ts中的enum是一个很有趣的枚举类型,它的底层就是number的实现
1.普通枚举
enum Color {
Green,
let c: Color = Color.Blue;
console.log(c); // 2
2.字符串枚举
enum Color {
Red = 'red',
Green = 'not red',
3.异构枚举 / 有时也叫混合枚举
enum Color {
Red = 'red',
Num = 2,
enum Color {
A, // 0
B, // 1
C = 20, // 20
D, // 21
E = 100, // 100
F, // 101
若初始化有部分赋值,那么后续成员的值为上一个成员的值加1
<第二个坑> 这个坑是第一个坑的延展,稍不仔细就会上当!
const getValue = () => {
return 23
enum List {
A = getValue(),
B = 24, // 此处必须要初始化值,不然编译不通过
console.log(List.A) // 23
console.log(List.B) // 24
console.log(List.C) // 25
如果某个属性的值是计算出来的,那么它后面一位的成员必须要初始化值。
否则将会 Enum member must have initializer.
笔者理解的泛型很白话:先不指定具体类型,通过传入的参数类型来得到具体类型
我们从下述的 filter-demo 入手,探索一下为什么一定需要泛型
泛型的基础样式
function fun<T>(args: T): T {
return args
如果没接触过,是不是会觉得有点懵? 没关系!我们直接从业务角度深入——
1.刚开始的需求:过滤数字类型的数组
declare function filter(
array: number[],
fn: (item: unknown) => boolean
) : number[];
2.产品改了需求:还要过滤一些字符串 string[]
彳亍,那就利用函数的重载, 加一个声明, 虽然笨了点,但是很好理解
declare function filter(
array: string[],
fn: (item: unknown) => boolean
): string[];
declare function filter(
array: number[],
fn: (item: unknown) => boolean
): number[];
3.产品又来了! 这次还要过滤 boolean[]、object[] ..........
这个时候如果还是选择重载,将会大大提升工作量,代码也会变得越来越累赘,这个时候泛型就出场了,
它从实现上来说更像是一种方法,通过你的传参来定义类型,改造如下:
declare function filter<T>(
array: T[],
fn: (item: unknown) => boolean
): T[];
泛型中的可以是任意,但是大部分偏好为 T、U、S 等,
当我们把泛型理解为一种方法实现后,那么我们便很自然的联想到:方法有多个参数、默认值,泛型也可以
type Foo<T, U = string> = { // 多参数、默认值
foo: Array<T> // 可以传递
bar: U
type A = Foo<number> // type A = { foo: number[]; bar: string; }
type B = Foo<number, number> // type B = { foo: number[]; bar: number; }
既然是“函数”,那也会有“限制”,下文列举一些稍微常见的约束
1. extends: 限制 T 必须至少是一个 XXX 的类型
type dayOff<T extends HTMLElement = HTMLElement> = {
where: T,
name: string
2. Readonly<T>: 构造一个所有属性为readonly,这意味着无法重新分配所构造类型的属性。
interface Eat {
food: string;
const todo: Readonly<Eat> = {
food: "meat beef milk",
todo.food = "no food"; // Cannot assign to 'title' because it is a read-only property.
3. Pick<T,K>: 从T中挑选出一些K属性
interface Todo {
name: string;
job: string;
work: boolean;
type TodoPreview = Pick<Todo, "name" | "work">;
const todo: TodoPreview = {
name: "jiawen",
work: true,
todo;
4. Omit<T, K>: 结合了 T 和 K 并忽略对象类型中 K 来构造类型。
interface Todo {
name: string;
job: string;
work: boolean;
type TodoPreview = Omit<Todo, "work">;
const todo: TodoPreview = {
name: "jiawen",
job: 'job',
5.Record: 约束 定义键类型为 Keys、值类型为 Values 的对象类型。
enum Num {
A = 10001,
B = 10002,
C = 10003
const NumMap: Record<Num, string> = {
[Num.A]: 'this is A',
[Num.B]: 'this is B'
// 类型 "{ 10001: string; 10002: string; }" 中缺少属性 "10003",
// 但类型 "Record<ErrorCodes, string>" 中需要该属性,所以我们还可以通过Record来做全面性检查
keyof 关键字可以用来获取一个对象类型的所有 key 类型
type User = {
id: string;
name: string;
type UserKeys = keyof User; // "id" | "name"
type Record<K extends keyof any, T> = {
[P in K]: T;
此时的 T 为 any;
还有一些不常用,但是很易懂的:
6. Extract<T, U> 从T,U中提取相同的类型
7. Partial<T> 所有属性可选
type User = {
id?: string,
gender: 'male' | 'female'
type PartialUser = Partial<User> // { id?: string, gender?: 'male' | 'female'}
type Partial<T> = { [U in keyof T]?: T[U] }
8. Required<T> 所有属性必须 << === >> 与Partial相反
type User = {
id?: string,
sex: 'male' | 'female'
type RequiredUser = Required<User> // { readonly id: string, readonly gender: 'male' | 'female'}
function showUserProfile (user: RequiredUser) {
console.log(user.id) // 这时候就不需要再加?了
console.log(user.sex)
type Required<T> = { [U in keyof T]-?: T[U] }; -? : 代表去掉?
const user = {} as User;
console.log(user.name);
console.log(user.id) // 类型“User”上不存在属性“id”。
通常来讲 type 更为通用,右侧可以是任意类型,包括表达式运算,以及映射等;
凡是可用 interface 来定义的,type 也可;
扩展方式也不同,interface 可以用 extends 关键字进行扩展,或用来 implements 实现某个接口;
都可以用来描述一个对象或者函数;
type 可以声明基本类型别名、联合类型、元组类型,interface 不行;
⚠️ 但如果你是在开发一个包,模块,允许别人进行扩展就用 interface,如果需要定义基础数据类型或者需要类型运算,使用 type。
interface 可以被多次定义,并会被视作合并声明,而 type 不支持;
导出方式不同,interface 支持同时声明并默认导出,而 typetype 必须先声明后导出;
TS 的脚本模式和模块模式
Typescript 存在两种模式,区分的逻辑是,文件内容包不包含 import 或者 export 关键字
脚本模式(Script) 一个文件对应一个 html 的 script 标签,
模块模式(Module)一个文件对应一个 Typescript 的模块。
脚本模式下,所有变量定义,类型声明都是全局的,多个文件定义同一个变量会报错,同名 interface 会进行合并;而模块模式下,所有变量定义,类型声明都是模块内有效的。
两种模式在编写类型声明时也有区别,例如脚本模式下直接 declare var GlobalStore 即可为全局对象编写声明。
脚本模式下直接 declare var GlobalStore 即可为全局对象编写声明。
GlobalStore.foo = "foo";
GlobalStore.bar = "bar"; // Error
declare var GlobalStore: {
foo: string;
模块模式下,要为全局对象编写声明需要 declare global
GlobalStore.foo = "foo";
GlobalStore.bar = "bar";
declare global {
var GlobalStore: {
foo: string;
bar: string;
export {}; // export 关键字改变文件的模式
TS 的索引签名
索引签名可以用来定义对象内的属性、值的类型,例如定义一个 React 组件,允许 Props 可以传任意 key 为 string,value 为 number 的 props
interface Props {
[key: string]: number
<Component count={1} /> // OK
<Component count={true} /> // Error
<Component count={'1'} /> // Error
TS 的类型键入
Typescript 允许像对象取属性值一样使用类型
type User = {
userId: string
friendList: {
fristName: string
lastName: string
type UserIdType = User['userId'] // string
type FriendList = User['friendList'] // { fristName: string; lastName: string; }[]
type Friend = FriendList[number] // { fristName: string; lastName: string; }
在上面的例子中,我们利用类型键入的功能从 User 类型中计算出了其他的几种类型。FriendList[number]这里的 number 是关键字,用来取数组子项的类型。在元组中也可以使用字面量数字得到数组元素的类型。
type group = [number, string]
type First = group[0] // number
type Second = group[1] // string
TS 的断言
类型断言不是类型转换,断言成一个联合类型中不存在的类型是不允许的
function getLength(value: string | number): number {
if (value.length) {
return value.length;
} else {
return value.toString().length;
// 这个问题在object of parmas已经提及,不再赘述
if ((<string>value).length) {
return (<string>value).length;
} else {
return something.toString().length;
断言的两种写法
1. <类型>值: <string>value
2. 或者 value as string
特别注意!!! 断言成一个联合类型中不存在的类型是不允许的
function toBoolean(something: string | number): boolean {
return <boolean>something;
非空断言符 !
TypeScript 还具有一种特殊的语法,用于从类型中删除 null 和 undefined 不进行任何显式检查。!在任何表达式之后写入实际上是一个类型断言,表明该值不是 null 或 undefined
function liveDangerously(x?: number | undefined | null) {
// 推荐写法
console.log(x!.toFixed());
四、如何在 Hook 组件中使用 TS
usestate
useState 如果初始值不是 null/undefined 的话,是具备类型推导能力的,根据传入的初始值推断出类型;初始值是 null/undefined 的话则需要传递类型定义才能进行约束。一般情况下,还是推荐传入类型(通过 useState 的第一个泛型参数)。
// 这里ts可以推断 value的类型并且能对setValue函数调用进行约束
const [value, setValue] = useState(0);
interface MyObject {
name: string;
age?: number;
// 这里需要传递MyObject才能约束 value, setValue
// 所以我们一般情况下推荐传入类型
const [value, setValue] = useState<MyObject>(null);
-----as unkonwn as unkownun
useEffect useLayoutEffect
没有返回值,无需类型传递和约束
useMemo useCallback
useMemo 无需传递类型, 根据函数的返回值就能推断出类型。
useCallback 无需传递类型,根据函数的返回值就能推断出类型。
但是注意函数的入参需要定义类型,不然将会推断为 any!
const value = 10;
const result = useMemo(() => value * 2, [value]); // 推断出result是number类型
const multiplier = 2;
// 推断出 (value: number) => number
// 注意函数入参value需要定义类型
const multiply = useCallback((value: number) => value * multiplier, [multiplier]);
useRef
useRef 传非空初始值的时候可以推断类型,同样也可以通过传入第一个泛型参数来定义类型,约束 ref.current 的类型。
1. 如果传值为null
const MyInput = () => {
const inputRef = useRef<HTMLInputElement>(null); // 这里约束inputRef是一个html元素
return <input ref={inputRef} />
2. 如果不为null
const myNumberRef = useRef(0); // 自动推断出 myNumberRef.current 是number类型
myNumberRef.current += 1;
useContext
useContext 一般根据传入的 Context 的值就可以推断出返回值。一般无需显示传递类型
type Theme = 'light' | 'dark';
// 我们在createContext就传了类型了
const ThemeContext = createContext<Theme>('dark');
const App = () => (
<ThemeContext.Provider value="dark">
<MyComponent />
</ThemeContext.Provider>
const MyComponent = () => {
// useContext根据ThemeContext推断出类型,这里不需要显示传
const theme = useContext(ThemeContext);
return <div>The theme is {theme}</div>;
五、关于 TS 的一些思考
1. 关于 TSC 如何把 TS 代码转换为 JS 代码
这个部分比较冗长,后续可以单独出一篇文章(2)来专门探索。
不过,tsconfig.json 的部分常用的配置属性表还是值得一提的
"compilerOptions": {
"noEmit": true, // 不输出文件
"allowUnreachableCode": true, // 不报告执行不到的代码错误。
"allowUnusedLabels": false, // 不报告未使用的标签错误
"alwaysStrict": false, // 以严格模式解析并为每个源文件生成 "use strict"语句
"baseUrl": ".", // 工作根目录
"lib": [ // 编译过程中需要引入的库文件的列表
"es5",
"es2015",
"es2016",
"es2017",
"es2018",
"dom"
"experimentalDecorators": true, // 启用实验性的ES装饰器
"jsx": "react", // 在 .tsx文件里支持JSX
"sourceMap": true, // 是否生成map文件
"module": "commonjs", // 指定生成哪个模块系统代码
"noImplicitAny": false, // 是否默认禁用 any
"removeComments": true, // 是否移除注释
"types": [ //指定引入的类型声明文件,默认是自动引入所有声明文件,一旦指定该选项,则会禁用自动引入,改为只引入指定的类型声明文件,如果指定空数组[]则不引用任何文件
"node", // 引入 node 的类型声明
"paths": { // 指定模块的路径,和baseUrl有关联,和webpack中resolve.alias配置一样
"src": [ //指定后可以在文件之直接 import * from 'src';
"./src"
"target": "ESNext", // 编译的目标是什么版本的
"outDir": "./dist", // 输出目录
"declaration": true, // 是否自动创建类型声明文件
"declarationDir": "./lib", // 类型声明文件的输出目录
"allowJs": true, // 允许编译javascript文件。
// 指定一个匹配列表(属于自动指定该路径下的所有ts相关文件)
"include": [
"src/**/*"
// 指定一个排除列表(include的反向操作)
"exclude": [
"demo.ts"
// 指定哪些文件使用该配置(属于手动一个个指定文件)
"files": [
"demo.ts"
2. TS 泛型的底层实现
关于TS泛型进阶篇 链接:[https://dtstack.yuque.com/rd-center/sm6war/wae3kg](https://dtstack.yuque.com/rd-center/sm6war/wae3kg)
这个部分比较复杂,笔者还需沉淀,欢迎各位直接留言或在文章中补充!!!
3. TS 泛型+类型反推在实际开发中的应用