1 reviews = pd.read_csv('matplotlib_data_test\\fandango_scores.csv')
2 cols = ['FILM', 'RT_user_norm', 'Metacritic_user_nom',
3 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
4 norm_reviews = reviews[cols]
5 print(norm_reviews[:1])
7 num_cols = ['RT_user_norm', 'Metacritic_user_nom',
8 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
10 bar_heights = norm_reviews.loc[0, num_cols].values
11 print(bar_heights)
12 bar_positions = np.arange(5) + 0.75
13 print(bar_positions)
14 fig, ax = plt.subplots()
15 ax.bar(bar_positions, bar_heights, 0.5)
16 plt.show()
运行结果:
此时我们可以调整参数,让图更美观。
1 num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue', 'Fandango_Stars']
2 bar_heights = norm_reviews.loc[0, num_cols].values
3 bar_positions = np.arange(5) + 1 # 设置bar的位置
4 tick_positions = range(1, 6) # 设置刻度的位置
5 fig, ax = plt.subplots()
6 ax.bar(bar_positions, bar_heights, 0.5)
7 ax.set_xticks(tick_positions) # 要显示刻度名必须使用这个,不然刻度名会左移错位。
8 ax.set_xticklabels(num_cols, rotation=90)
9 # 设置坐标轴名称和图片主题
10 ax.set_xlabel('Rating Source')
11 ax.set_ylabel('Average Rating')
12 ax.set_title('Average User Rating For Avengers: Age of Ultron (2015)')
13 plt.show()
运行结果:
在很多时候,我们更希望这种图可以横着画,我们可以在画图的时候使用
ax.barh()
去画,其他命令一样。
效果如下:(这里是pycharm的效果,右边显示不完全)
绘制散点图
ax.scatter()
用来绘制散点图,如下:
1 fig, ax = plt.subplots()
2 ax.scatter(norm_reviews['Fandango_Ratingvalue'], norm_reviews['RT_user_norm'])
3 ax.set_xlabel('Fandango')
4 ax.set_ylabel('Rotten Tomatoes')
5 plt.show()
运行结果:
绘制两个子图:
1 fig = plt.figure(figsize=(10, 5))
2 ax1 = fig.add_subplot(1, 2, 1)
3 ax2 = fig.add_subplot(1, 2, 2)
4 # 绘制子图1
5 ax1.scatter(norm_reviews['Fandango_Ratingvalue'], norm_reviews['RT_user_norm'])
6 ax1.set_xlabel('Fandango')
7 ax1.set_ylabel('Rotten Tomatoes')
8 # 绘制子图2
9 ax2.scatter(norm_reviews['RT_user_norm'], norm_reviews['Fandango_Ratingvalue'])
10 ax2.set_xlabel('Rotten Tomatoes')
11 ax2.set_ylabel('Fandango')
12 plt.show()
运行结果:
绘制直方图
ax.hist()
绘制直方图
1 fig, ax = plt.subplots()
2 ax.hist(norm_reviews['Fandango_Ratingvalue'], range=(4, 5), bins=20) # 4-5 其实结束
3 plt.show()
运行结果:
这里的
bins=20
是指定直方图直方的个数为20个,
range(4,5)
指定范围在4到5之间的。
绘制直方图子图:
1 fig = plt.figure(figsize=(25, 20))
2 ax1 = fig.add_subplot(2, 2, 1)
3 ax2 = fig.add_subplot(2, 2, 2)
4 ax3 = fig.add_subplot(2, 2, 3)
5 ax4 = fig.add_subplot(2, 2, 4)
6 ax1.hist(norm_reviews['Fandango_Ratingvalue'], bins=20, range=(0, 5))
7 ax1.set_title('Distribution of Fandango Ratings')
8 ax1.set_ylim(0, 40)
10 ax2.hist(norm_reviews['RT_user_norm'], 20, range=(0, 5))
11 ax2.set_title('Distribution of Rotten Tomatoes Ratings')
12 ax2.set_ylim(0, 40)
14 ax3.hist(norm_reviews['Metacritic_user_nom'], 20, range=(0, 5))
15 ax3.set_title('Distribution of Metacritic Ratings')
16 ax3.set_ylim(0, 40)
18 ax4.hist(norm_reviews['IMDB_norm'], 20, range=(0, 5))
19 ax4.set_title('Distribution of IMDB Ratings')
20 ax4.set_ylim(0, 40)
22 plt.show()
绘制箱线图
绘制箱线图可以使用
ax.boxplot()
来绘制。
1 fig, ax = plt.subplots()
2 ax.boxplot(norm_reviews['RT_user_norm'])
3 ax.set_xticklabels(['Rotten Tomatoes'])
4 ax.set_ylim(0, 5)
5 plt.show()
运行结果:
绘制多个箱线图:
1 num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ratingvalue']
2 fig, ax = plt.subplots()
3 ax.boxplot(norm_reviews[num_cols].values) #箱线图
4 ax.set_xticklabels(num_cols, rotation=20)
5 ax.set_ylim(0,5)
6 plt.show()
运行结果:
隐藏上边框和右边框
1 women_degrees = pd.read_csv('matplotlib_data_test\percent-bachelors-degrees-women-usa.csv')
2 fig, ax = plt.subplots()
3 ax.plot(women_degrees['Year'], women_degrees['Biology'], c='blue', label='Women')
4 ax.plot(women_degrees['Year'], 100-women_degrees['Biology'], c='green', label='Men')
5 ax.tick_params(bottom="off", top="off", left="off", right="off") # 设置刻度线是否显示
6 print(type(ax.spines))
7 # 取消边框
8 for key, spine in ax.spines.items():
9 # 'left', 'right', 'bottom', 'top'
10 if key == 'right' or key == 'top':
11 spine.set_visible(False)
14 ax.legend(loc='upper right')
15 plt.show()
运行结果:
在上面的代码中,我们可以发现第五行可以实现坐标轴上的刻度是否显示,以及显示在哪个边框。
绘制无边框的折线子图
1 women_degrees = pd.read_csv('matplotlib_data_test\percent-bachelors-degrees-women-usa.csv')
2 major_cats = ['Biology', 'Computer Science', 'Engineering', 'Math and Statistics']
4 # 设置线的颜色
5 cb_dark_blue = (0 / 255, 107 / 255, 164 / 255)
6 cb_orange = (255 / 255, 128 / 255, 14 / 255)
8 fig = plt.figure(figsize=(12, 12))
10 for sp in range(0, 4):
11 ax = fig.add_subplot(2, 2, sp + 1)
12 # The color for each line is assigned here.
13 ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c=cb_dark_blue, label='Women')
14 ax.plot(women_degrees['Year'], 100 - women_degrees[major_cats[sp]], c=cb_orange, label='Men')
15 for key, spine in ax.spines.items():
16 spine.set_visible(False)
17 ax.set_xlim(1968, 2011)
18 ax.set_ylim(0, 100)
19 ax.set_title(major_cats[sp])
20 ax.tick_params(bottom="off", top="off", left="off", right="off")
21 plt.legend(loc='best')
23 plt.show()
运行结果:
这里你可以使用
linewidth=10
来指定线的宽度。