添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
电池平衡是电池管理系统 (BMS) 的一项重要功能,用于延长电池运行时间和使用寿命。由于对更大和性能更好的电池组的需求不断增长,各种电池平衡技术正受到关注。被动平衡方法是最受欢迎的,因为它成本低且易于实施。由于平衡能量通过平衡电阻以热量的形式耗散,平衡系统的适当热方案是必要的,以将 BMS 板温度保持在可容忍的限度内。在本文中,提出了使用基于机器学习 (ML) 的平衡控制算法根据电池不平衡程度、平衡时间、C-率和温升优化选择平衡电阻器,以改善平衡时间和优化功率损耗管理。在无源平衡系统中使用可变电阻器,以优化功率损耗并获得最佳热特性。所提出系统的性能使用反向传播神经网络 (BPNN)、径向基神经网络 (RBNN) 和长短期记忆 (LSTM) 进行评估。对平衡系统进行误差分析以优化平衡参数,并使用均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等性能指标对所提出的算法进行比较,以验证平衡模型表现。在 Matlab-Simscape 环境中对使用机器学习算法实现被动平衡的可能优化范围进行了实验。以优化功率损耗并获得最佳热特性。所提出系统的性能使用反向传播神经网络 (BPNN)、径向基神经网络 (RBNN) 和长短期记忆 (LSTM) 进行评估。对平衡系统进行误差分析以优化平衡参数,并使用均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等性能指标对所提出的算法进行比较,以验证平衡模型表现。在 Matlab-Simscape 环境中对使用机器学习算法实现被动平衡的可能优化范围进行了实验。以优化功率损耗并获得最佳热特性。所提出系统的性能使用反向传播神经网络 (BPNN)、径向基神经网络 (RBNN) 和长短期记忆 (LSTM) 进行评估。对平衡系统进行误差分析以优化平衡参数,并使用均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等性能指标对所提出的算法进行比较,以验证平衡模型表现。在 Matlab-Simscape 环境中对使用机器学习算法实现被动平衡的可能优化范围进行了实验。径向基神经网络 (RBNN) 和长短期记忆 (LSTM)。对平衡系统进行误差分析以优化平衡参数,并使用均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等性能指标对所提出的算法进行比较,以验证平衡模型表现。在 Matlab-Simscape 环境中对使用机器学习算法实现被动平衡的可能优化范围进行了实验。径向基神经网络 (RBNN) 和长短期记忆 (LSTM)。对平衡系统进行误差分析以优化平衡参数,并使用均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)等性能指标对所提出的算法进行比较,以验证平衡模型表现。在 Matlab-Simscape 环境中对使用机器学习算法实现被动平衡的可能优化范围进行了实验。 Cell balancing is a vital function of battery management system (BMS), which is implemented to extend the battery run time and service life. Various cell balancing techniques are being focused due to the growing requirements of larger and superior performance battery packs. The passive balancing approach is the most popular because of its low cost and easy implementation. As the balancing energy is dissipated as heat by the balancing resistors, an appropriate thermal scheme of the balancing system is necessary, to keep the BMS board temperature under a tolerable limit. In this paper, optimum selection of balancing resistor with respect to degree of cell imbalance, balancing time, C- rate, and temperature rise using machine learning (ML) based balancing control algorithm is proposed to improve the balancing time and optimal power loss management. Variable resistors are utilised in the passive balancing system, in order to optimize the power loss and to obtain optimal thermal characterization. The performance of the proposed system is evaluated using back propagation neural network (BPNN), radial basis neural network (RBNN), and long short term memory (LSTM). Error analysis of the balancing system is done to optimize balancing parameters and the proposed algorithms are compared using performance indices such as mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) to validate the balancing model performance. The possible optimization scope for implementing passive balancing using machine learning algorithms are experimented in the Matlab-Simscape environment.