regulonAUC <- loadInt(scenicOptions, "aucell_regulonAUC")
regulonAUC <- regulonAUC[onlyNonDuplicatedExtended(rownames(regulonAUC)),]
regulonActivity_byCellType <- sapply(split(rownames(cellInfo), cellInfo$CellType),
function(cells) rowMeans(getAUC(regulonAUC)[,cells]))
regulonActivity_byCellType_Scaled <- t(scale(t(regulonActivity_byCellType), center = T, scale=T))
pheatmap::pheatmap(regulonActivity_byCellType_Scaled, #fontsize_row=3,
color=colorRampPalette(c("blue","white","red"))(100), breaks=seq(-3, 3, length.out = 100),
treeheight_row=10, treeheight_col=10, border_color=NA)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oeZD3EFC-1575035969758)(https://upload-images.jianshu.io/upload_images/7071112-5217e56ad796916e?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)]
# filename="regulonActivity_byCellType.pdf", width=10, height=20)
topRegulators <- reshape2::melt(regulonActivity_byCellType_Scaled)
colnames(topRegulators) <- c("Regulon", "CellType", "RelativeActivity")
topRegulators <- topRegulators[which(topRegulators$RelativeActivity>0),]
viewTable(topRegulators)
minPerc <- .7
binaryRegulonActivity <- loadInt(scenicOptions, "aucell_binary_nonDupl")
cellInfo_binarizedCells <- cellInfo[which(rownames(cellInfo)%in% colnames(binaryRegulonActivity)),, drop=FALSE]
regulonActivity_byCellType_Binarized <- sapply(split(rownames(cellInfo_binarizedCells), cellInfo_binarizedCells$CellType),
function(cells) rowMeans(binaryRegulonActivity[,cells, drop=FALSE]))
binaryActPerc_subset <- regulonActivity_byCellType_Binarized[which(rowSums(regulonActivity_byCellType_Binarized>minPerc)>0),]
pheatmap::pheatmap(binaryActPerc_subset, # fontsize_row=5,
color = colorRampPalette(c("white","pink","red"))(100), breaks=seq(0, 1, length.out = 100),
treeheight_row=10, treeheight_col=10, border_color=NA)
Aibar, Sara, Carmen Bravo González-Blas, Thomas Moerman, Jasper Wouters, Vân Anh Huynh-Thu, Hana Imrichová, Zeynep Kalender Atak, et al. 2017. “SCENIC: Single-Cell Regulatory Network Inference and Clustering.” Nature Methods 14 (october): 1083–6. doi:10.1038/nmeth.4463.
Davie, Kristofer, Jasper Janssens, Duygu Koldere, and “et al.” 2018. “A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain.” Cell, june. doi:10.1016/j.cell.2018.05.057.
Huynh-Thu, Vân Anh, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts. 2010. “Inferring Regulatory Networks from Expression Data Using Tree-Based Methods.” PloS One 5 (9). doi:10.1371/journal.pone.0012776.
Marbach, Daniel, James C. Costello, Robert Küffner, Nicole M. Vega, Robert J. Prill, Diogo M. Camacho, Kyle R. Allison, et al. 2012. “Wisdom of Crowds for Robust Gene Network Inference.” Nature Methods 9 (8): 796–804. doi:10.1038/nmeth.2016.
https://rawcdn.githack.com/aertslab/SCENIC/0a4c96ed8d930edd8868f07428090f9dae264705/inst/doc/SCENIC_Running.html#directories
在2019/08/07的Nature刊中,中科院景乃禾课题组发表了文章——Molecular architecture of lineage allocation and tissue organization in early mouse embryo ,我在这篇文章中发现了一个被汤神组 (就是Hemberg-lab单细胞转录组数据分析(二)- 实验平台中开辟了单细胞转录组领域的人)反...
SCENIC(单细胞重组网络推断和聚类)是一种从单细胞RNA序列数据推断基因调控网络和细胞类型的计算方法。
该方法的描述和一些使用示例可在《。
当前在R(此存储库)和Python中有SCENIC的实现。 如果您不太喜欢使用R,我们建议您检查一下SCENIC(其中包含Nextflow工作流程)和Python / Jupyter笔记本,以轻松运行SCENIC (强烈建议您批量运行SCENIC或更大的数据集)。 然后,可以在R,Python或SCope(Web界面)中浏览任何实现的输出。
有关在R运行SCENIC的更多详细信息和安装说明,请参阅以下教程:
这些示例的输出位于: :
常见问题:
2021/03/26:
2020/06/26:
该SCENICprotocol包括Nextflow工作流程,并pySCENIC笔记本现在正式发布。 有关详细信息
pyscenic
micromamba activate SCpip install pyscenic -i https://mirrors.aliyun.com/pypi/simple/
安装docker
需要有root权限或者在docker的用户组
#1.Update the apt package index and inst
可扩展的SCENIC工作流程,用于单细胞基因调控网络分析
该存储库描述了如何对单细胞数据运行pySCENIC基因调控网络推断分析以及基本的“最佳实践”表达分析。 这包括:
独立的Jupyter笔记本电脑,用于交互式分析
Nextflow DSL1工作流程,它提供了一种半自动化且简化的方法来运行这些步骤
pySCENIC安装,使用和下游分析的详细信息
另请参阅《自然规约》中的相关出版物: : 。
有关此协议中步骤的高级实现,请参阅 ,这是pySCENIC的Nextflow DSL2实现,具有用于表达式分析的全面且可自定义的管道。 这包括其他pySCENIC功能(多次运行,集成的基于主题和基于轨迹的regulon修剪,织机文件生成)。
PBMC 10k数据集(10x基因组学)
完整的SCENIC分析,以及过滤,群集,可视化和SCope就绪的织机文件创建: |
Scenic 场景描述语言的编译器和场景生成器。 请参阅以获取安装说明,以及有关 Scenic 语言、其实现及其与各种模拟器的接口的教程和其他信息。
有关该语言及其一些应用的描述,请参阅,它扩展了我们的(注意:自以来,Scenic 的语法略有变化,并且添加了许多功能,例如支持动态场景;这些在预印本中进行了描述)。 Scenic 由 Daniel J. Fremont、Edward Kim、Tommaso Dreossi、Shromona Ghosh、Xianyu Yu、Alberto L. Sangiovanni-Vincentelli 和 Sanjit A. Seshia 设计和实施。
如果您在使用 Scenic 时遇到任何问题,请向提交问题或通过联系 Daniel。
存储库的组织方式如下:
src/scenic目录包含正确的包;
examples目录中有很多 Sce
scFunctions
Florian Wuennemann的单细胞数据分析功能集合。 主要对Seurat对象进行操作。 有关Seurat和对象结构的更多信息,请参见 。
使用devtools install_github函数安装软件包,如下所示:
library(devtools)
install_github("FloWuenne/scFunctions")
SCENIC功能
您可以在此[tutorial]中找到有关如何使用此软件包中的功能来进一步处理和分析SCENIC结果的指南):
当然可以!下面是一些有关肝癌中单细胞可变剪接的教程:
1. "单细胞 RNA 序列分析流程",这是一份详细的指导手册,将介绍如何进行单细胞 RNA 序列分析,包括数据预处理、比对、可变剪接分析等。
2. "SCENIC:一种单细胞可变剪接分析方法",这篇文章介绍了一种单细胞可变剪接分析方法,名为 SCENIC。它详细介绍了如何使用这个工具进行单细胞可变剪接分析。
3. "单细胞可变剪接分析实战指南",这篇指南详细介绍了如何使用 Galaxy 平台进行单细胞可变剪接分析,包括数据上传、预处理、可变剪接分析等。
希望这些教程对您有所帮助!