双目测距原理
大家好,又见面了,我是你们的朋友全栈君。
双目测距基本原理:
双目测距实际操作分4个步骤 :相机标定——双目校正——双目匹配——计算深度信息。
相机标定: 摄像头由于光学透镜的特性使得成像存在着径向畸变,可由三个参数k1,k2,k3确定;由于装配方面的误差,传感器与光学镜头之间并非完全平行,因此成像存在切向畸变,可由两个参数p1,p2确定。单个摄像头的定标主要是计算出摄像头的内参(焦距f和成像原点cx,cy、五个畸变参数(一般只需要计算出k1,k2,p1,p2,对于鱼眼镜头等径向畸变特别大的才需要计算k3))以及外参(标定物的世界坐标)。而双目摄像头定标不仅要得出每个摄像头的内部参数,还需要通过标定来测量两个摄像头之间的相对位置(即右摄像头相对于左摄像头的旋转矩阵R、平移向量t)。
双目校正: 双目校正是根据摄像头定标后获得的单目内参数据(焦距、成像原点、畸变系数)和双目相对位置关系(旋转矩阵和平移向量),分别对左右视图进行消除畸变和行对准, 使得左右视图的成像原点坐标一致 (CV_CALIB_ZERO_DISPARITY标志位设置时发生作用)、两摄像头光轴平行、左右成像平面共面、对极线行对齐。这样一幅图像上任意一点与其在另一幅图像上的对应点就必然具有相同的行号,只需在该行进行一维搜索即可匹配到对应点。 双目匹配: 双目匹配的作用是把同一场景在左右视图上对应的像点匹配起来,这样做的目的是为了得到视差图。双目匹配被普遍认为是立体视觉中最困难也是最关键的问题。得到视差数据,通过上述原理中的公式就可以很容易的计算出深度信息。
双目摄像机的物理机构
网上大部分人都写了这一点,也仿佛只有这一点有写的价值和物理意义。 这里本来想放个控件(可调节动画),一直弄不上来,就算了。需要的可以联系我要下,下面放两张图片。
图中可以得出的结论 1.深度变化(EG*EF/(AB+CD)或者H到EF的距离),会导致AB,CD和AB+CD的变化,这里不过多强调AB,CD的变化,只讨论AB+CD,这个原因后边会提到。当深度变大时,AB+CD逐渐变小。 从公式(公式看不懂没关系,它只是我推导的,大家也可以自己推一下,推导是三角形的比例关系) AC=EF-AB-DC 设Z为深度 那么AC/EF=(Z-EG)/Z 这样就可以推导出来了。
从这个图我们就可以明显看出只要我们的深度不变,那么我们的AB+CD也就不会改变,可以看出,深度和单独的AB与CD没有直接关系,而只与两者的和有关。
AB+CD 与同一距离的 视差 是想等的。
AB + DC = XR – XT
注意此处 AB DC 用向量相加 (AB + DC = = (Bx-Ax)+ (Cx – Dx) 【Bx 为左图像的中点x, Dx为右图像的中点x Ax,Cx为两幅图同一特征点的x坐标】
XR – XT = XRx – XTx (XRx 与 XTx 分别是两幅图同一特征点的x坐标)
备注:此处的公式都是假设摄像头是水平的,如果摄像头垂直,应该使用 y 坐标。
单目测距原理:
先通过图像匹配进行目标识别(各种车型、行人、物体等),再通过目标在图像中的大小去估算目标距离。这就要求在估算距离之前首先对目标进行准确识别,是汽车还是行人,是货车、SUV还是小轿车。准确识别是准确估算距离的第一步。要做到这一点,就需要建立并不断维护一个庞大的样本特征数据库,保证这个数据库包含待识别目标的全部特征数据。比如在一些特殊地区,为了专门检测大型动物,必须先行建立大型动物的数据库;而对于另外某些区域存在一些非常规车型,也要先将这些车型的特征数据加入到数据库中。如果缺乏待识别目标的特征数据,就会导致系统无法对这些车型、物体、障碍物进行识别,从而也就无法准确估算这些目标的距离。
单/双目方案的优点与难点
从上面的介绍, 单目系统的优势 在于成本较低,对计算资源的要求不高,系统结构相对简单; 缺点 是:(1)需要不断更新和维护一个庞大的样本数据库,才能保证系统达到较高的识别率;(2)无法对非标准障碍物进行判断;(3)距离并非真正意义上的测量,准确度较低。
双目检测原理:
通过对两幅图像视差的计算,直接对前方景物(图像所拍摄到的范围)进行距离测量,而无需判断前方出现的是什么类型的障碍物。所以对于任何类型的障碍物,都能根据距离信息的变化,进行必要的预警或制动。双目摄像头的原理与人眼相似。人眼能够感知物体的远近,是由于两只眼睛对同一个物体呈现的图像存在差异,也称“视差”。物体距离越远,视差越小;反之,视差越大。视差的大小对应着物体与眼睛之间距离的远近,这也是3D电影能够使人有立体层次感知的原因。
上图中的人和椰子树,人在前,椰子树在后,最下方是双目相机中的成像。其中,右侧相机成像中人在树的左侧,左侧相机成像中人在树的右侧,这是因为双目的角度不一样。再通过对比两幅图像就可以知道人眼观察树的时候视差小,而观察人时视差大。因为树的距离远,人的距离近。这就是双目三角测距的原理。双目系统对目标物体距离感知是一种绝对的测量,而非估算。
理想双目相机成像模型
根据上述推导, 要求得空间点P离相机的距离(深度)z ,必须知道: 1、相机焦距f,左右相机基线b(可以通过先验信息或者相机标定得到)。 2、视差 :
,即左相机像素点(xl, yl)和右相机中对应点(xr, yr)的关系,这是双目视觉的核心问题。
重点来看一下视差(disparity),视差是同一个空间点在两个相机成像中对应的x坐标的差值,它可以通过编码成灰度图来反映出距离的远近,离镜头越近的灰度越亮; (前提是两个摄像头是水平,如果两颗摄像头是垂直的,则使用y坐标的差值)
极线约束
对于左图中的一个像素点,如何确定该点在右图中的位置?需要在整个图像中地毯式搜索吗?当然不用,此时需要用到极线约束。 如上图所示。O1,O2是两个相机,P是空间中的一个点,P和两个相机中心点O1、O2形成了三维空间中的一个平面PO1O2,称为极平面(Epipolar plane)。极平面和两幅图像相交于两条直线,这两条直线称为极线(Epipolar line)。