添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
气势凌人的韭菜  ·  JPA 中 ...·  7 月前    · 
踏实的大海  ·  Flutter ...·  1 年前    · 
你必须知道的Pandas 解析json数据的函数-json_normalize(),自从用了它,彻底摆脱了网络上的各种JSON格式化工具

你必须知道的Pandas 解析json数据的函数-json_normalize(),自从用了它,彻底摆脱了网络上的各种JSON格式化工具

写了好几篇文章了,今天写点很少人写但是很有用的!记得点赞收藏加关注哦。

前言:Json介绍

Json是一个应用及其广泛的用来传输和交换数据的格式,它被应用在数据库中,也被用于API请求结果数据集中。虽然它应用广泛,机器很容易阅读且节省空间,但是却不利于人来阅读和进一步做数据分析,因此通常情况下需要在获取json数据后,将其转化为表格格式的数据,以方便人来阅读和理解。常见的Json数据格式有2种,均以键值对的形式存储数据,只是包装数据的方法有所差异:

a. 一般JSON对象

采用 {} 将键值对数据括起来,有时候会有多层 {}

一般Json对象

b. JSON对象列表

采用 [] JSON对象 括起来,形成一个JSON对象的列表,JSON对象中同样会有多层 {} ,也会有 [] 出现,形成 嵌套列表

Json对象列表

这篇文章主要讲述 pandas 内置的Json数据转换方法 json_normalize() ,它可以对以上两种Json格式的数据进行解析,最终生成 DataFrame ,进而对数据进行更多操作。本文的主要解构如下:

  1. 解析一个最基本的Json
  2. 解析一个带有多层数据的Json
  3. 解析一个带有嵌套列表的Json
  4. Key 不存在时如何忽略系统报错
  5. 使用 sep 参数为嵌套Json的 Key 设置分隔符
  6. 为嵌套列表数据和元数据添加前缀
  7. 通过URL获取Json数据并进行解析
  8. 探究:解析带有 多个嵌套列表 的Json

json_normalize()函数参数讲解

在进行代码演示前先导入相应依赖库,未安装pandas库的请自行安装(此代码在Jupyter Notebook环境中运行)。

from pandas import json_normalize
import pandas as pd

1. 解析一个最基本的Json

a. 解析一般Json对象

a_dict = {
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2
pd.json_normalize(a_dict)

输出结果为:

b. 解析一个Json对象列表

json_list = [
    {'class': 'Year 1', 'student number': 20, 'room': 'Yellow'},
    {'class': 'Year 2', 'student number': 25, 'room': 'Blue'}
pd.json_normalize(json_list)

输出结果为:

2. 解析一个带有多层数据的Json

a. 解析一个有多层数据的Json对象

json_obj = {
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {
        'president': 'John Kasich',
        'contacts': {
            'email': {
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            'tel': '123456789',
pd.json_normalize(json_obj)

输出结果为:

多层key之间使用点隔开,展示了所有的数据,这已经解析了3层,上述写法和 pd.json_normalize(json_obj, max_level=3) 等价。

如果设置 max_level=1 ,则输出结果为下图所示, contacts 部分的数据汇集成了一列

如果设置 max_level=2 ,则输出结果为下图所示, contacts 下的 email 部分的数据汇集成了一列

b. 解析一个有多层数据的Json对象列表

json_list = [
        'class': 'Year 1',
        'student count': 20,
        'room': 'Yellow',
        'info': {
            'teachers': {
                'math': 'Rick Scott',
                'physics': 'Elon Mask'
        'class': 'Year 2',
        'student count': 25,
        'room': 'Blue',
        'info': {
            'teachers': {
                'math': 'Alan Turing',
                'physics': 'Albert Einstein'
pd.json_normalize(json_list)

输出结果为:

若分别将 max_level 设置为 2 3 ,则输出结果应分别是什么?请自行尝试~

3. 解析一个带有嵌套列表的Json

json_obj = {
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {
        'president': 'John Kasich',
        'contacts': {
            'email': {
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            'tel': '123456789',
    'students': [
        {'name': 'Tom'},
        {'name': 'James'},
        {'name': 'Jacqueline'}
pd.json_normalize(json_obj)

此例中 students 键对应的值是一个 列表 ,使用 [] 括起来。直接采用上述的方法进行解析,则得到的结果如下:

students 部分的数据并未被成功解析,此时可以为 record_path 设置值即可,调用方式为 pd.json_normalize(json_obj, record_path='students') ,在此调用方式下,得到的结果只包含了 name 部分的数据。

若要增加其他字段的信息,则需为 meta 参数赋值,例如下述调用方式下,得到的结果如下:

pd.json_normalize(json_obj, record_path='students', meta=['school', 'location', ['info', 'contacts', 'tel'], ['info', 'contacts', 'email', 'general']])

4. 当 Key 不存在时如何忽略系统报错

data = [
        'class': 'Year 1', 
        'student count': 20, 
        'room': 'Yellow',
        'info': {
            'teachers': { 
                'math': 'Rick Scott', 
                'physics': 'Elon Mask',
        'students': [
            { 'name': 'Tom', 'sex': 'M' },
            { 'name': 'James', 'sex': 'M' },
        'class': 'Year 2', 
        'student count': 25, 
        'room': 'Blue',
        'info': {
            'teachers': { 
                 # no math teacher
                 'physics': 'Albert Einstein'
        'students': [
            { 'name': 'Tony', 'sex': 'M' },
            { 'name': 'Jacqueline', 'sex': 'F' },
pd.json_normalize(
    data, 
    record_path =['students'], 
    meta=['class', 'room', ['info', 'teachers', 'math']]
)

class 等于 Year 2 的Json对象中, teachers 下的 math 键不存在,直接运行上述代码会报以下错误,提示 math 键并不总是存在,且给出了相应建议: Try running with errors='ignore'

添加 errors 条件后,重新运行得出的结果如下图所示,没有 math 键的部分使用 NaN 进行了填补。

pd.json_normalize(
    data, 
    record_path =['students'], 
    meta=['class', 'room', ['info', 'teachers', 'math']],
    errors='ignore'
)

5. 使用 sep 参数为嵌套Json的 Key 设置分隔符

2.a 的案例中,可以注意到输出结果的具有多层 key 的数据列标题是采用 . 对多层key进行分隔的,可以为 sep 赋值以更改分隔符。

json_obj = {
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {
        'president': 'John Kasich',
        'contacts': {
          'email': {
              'admission': 'admission@abc.com',
              'general': 'info@abc.com'
          'tel': '123456789',
pd.json_normalize(json_obj, sep='->')

输出结果为:

6. 为嵌套列表数据和元数据添加前缀

3 例的输出结果中,各列名均无前缀,例如 name 这一列不知是元数据解析得到的数据,还是通过 student 嵌套列表的的出的数据,因此为 record_prefix meta_prefix 参数分别赋值,即可为输出结果添加相应前缀。

json_obj = {
    'school': 'ABC primary school',
    'location': 'London',
    'ranking': 2,
    'info': {
        'president': 'John Kasich',
        'contacts': {
            'email': {
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            'tel': '123456789',
    'students': [
        {'name': 'Tom'},
        {'name': 'James'},
        {'name': 'Jacqueline'}
pd.json_normalize(json_obj, record_path='students',
                  meta=['school', 'location', ['info', 'contacts', 'tel'], ['info', 'contacts', 'email', 'general']],
                  record_prefix='students->',
                  meta_prefix='meta->',
                  sep='->')

本例中,为嵌套列表数据添加 students-> 前缀,为元数据添加 meta-> 前缀,将嵌套key之间的分隔符修改为 -> ,输出结果为:

7. 通过URL获取Json数据并进行解析

通过URL获取数据需要用到 requests 库,请自行安装相应库。

import requests
from pandas import json_normalize
# 通过天气API,获取深圳近7天的天气
url = 'https://tianqiapi.com/free/week'
# 传入url,并设定好相应的params
r = requests.get(url, params={"appid":"59257444", "appsecret":"uULlTGV9 ", 'city':'深圳'})
# 将获取到的值转换为json对象
result = r.json()
df = json_normalize(result, meta=['city', 'cityid', 'update_time'], record_path=['data'])
df

result的结果如下所示,其中 data 为一个嵌套列表:

{'cityid': '101280601',
 'city': '深圳',
 'update_time': '2021-08-09 06:39:49',
 'data': [{'date': '2021-08-09',
   'wea': '中雨转雷阵雨',
   'wea_img': 'yu',
   'tem_day': '32',
   'tem_night': '26',
   'win': '无持续风向',
   'win_speed': '<3级'},
  {'date': '2021-08-10',
   'wea': '雷阵雨',
   'wea_img': 'yu',
   'tem_day': '32',
   'tem_night': '27',
   'win': '无持续风向',
   'win_speed': '<3级'},
  {'date': '2021-08-11',
   'wea': '雷阵雨',
   'wea_img': 'yu',
   'tem_day': '31',
   'tem_night': '27',
   'win': '无持续风向',
   'win_speed': '<3级'},
  {'date': '2021-08-12',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '33',
   'tem_night': '27',
   'win': '无持续风向',
   'win_speed': '<3级'},
  {'date': '2021-08-13',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '33',
   'tem_night': '27',
   'win': '无持续风向',
   'win_speed': '<3级'},
  {'date': '2021-08-14',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '32',
   'tem_night': '27',
   'win': '无持续风向',
   'win_speed': '<3级'},
  {'date': '2021-08-15',
   'wea': '多云',
   'wea_img': 'yun',
   'tem_day': '32',
   'tem_night': '27',
   'win': '无持续风向',
   'win_speed': '<3级'}]}

解析后的输出结果为:

8. 探究:解析带有 多个嵌套列表 的Json

当一个Json对象或对象列表中有超过一个嵌套列表时, record_path 无法将所有的嵌套列表包含进去,因为它只能接收一个key值。此时,我们需要先根据多个嵌套列表的 key 将Json解析成多个 DataFrame ,再将这些 DataFrame 根据实际关联条件拼接起来,并去除重复值。

json_obj = {
    'school': 'ABC primary school',
    'location': 'shenzhen',
    'ranking': 2,
    'info': {
        'president': 'John Kasich',
        'contacts': {
            'email': {
                'admission': 'admission@abc.com',
                'general': 'info@abc.com'
            'tel': '123456789',
    'students': [
        {'name': 'Tom'},
        {'name': 'James'},
        {'name': 'Jacqueline'}
    # 添加university嵌套列表,加上students,该JSON对象中就有2个嵌套列表了
    'university': [
        {'university_name': 'HongKong university shenzhen'},
        {'university_name': 'zhongshan university shenzhen'},
        {'university_name': 'shenzhen university'}
# 尝试在record_path中写上两个嵌套列表的名字,即record_path = ['students', 'university],结果无济于事
# 于是决定分两次进行解析,分别将record_path设置成为university和students,最终将2个结果合并起来
df1 = pd.json_normalize(json_obj, record_path=['university'],
                        meta=['school', 'location', ['info', 'contacts', 'tel'],
                              ['info', 'contacts', 'email', 'general']],
                        record_prefix='university->',
                        meta_prefix='meta->',
                        sep='->')
df2 = pd.json_normalize(json_obj, record_path=['students'],
                        meta=['school', 'location', ['info', 'contacts', 'tel'],