添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
\Sigma= \begin{bmatrix} \sigma(x_1,x_1) & \cdots & \sigma(x_1,x_d) \\ \vdots & \ddots & \vdots\\ \sigma(x_d,x_1) & \cdots & \sigma(x_d,x_d) \end{bmatrix} Σ = σ ( x 1 , x 1 ) σ ( x d , x 1 ) σ ( x 1 , x d ) σ ( x d , x d )
根据上述协方差矩阵的定义,矩阵 S=\begin{bmatrix}s_1 & 0 \\ 0 & s_2\end{bmatrix}=\begin{bmatrix}1 & 0 \\ 0 & \frac{1}{2}\end{bmatrix} S = [ s 1 0 0 s 2 ] = [ 1 0 0 2 1 ]
旋转矩阵(rotation matrix):
R=\begin{bmatrix} \cos{\theta} & -\sin{\theta} \\ \sin{\theta} & \cos{\theta} \end{bmatrix}=\begin{bmatrix} \cos{\frac{\pi}{6}} & -\sin{\frac{\pi}{6}} \\ \sin{\frac{\pi}{6}} & \cos{\frac{\pi}{6}} \end{bmatrix}=\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} &\frac{\sqrt{3}}{2} \end{bmatrix} R = [ cos θ sin θ sin θ cos θ ] = [ cos 6 π sin 6 π sin 6 π cos 6 π ] = [ 2 3 2 1 2 1 2 3 ]

A=RS=\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{4} \\ \frac{1}{2} &\frac{\sqrt{3}}{4} \end{bmatrix}
A = R S = [ 2 3 2 1 4 1 4