\Sigma= \begin{bmatrix} \sigma(x_1,x_1) & \cdots & \sigma(x_1,x_d) \\ \vdots & \ddots & \vdots\\ \sigma(x_d,x_1) & \cdots & \sigma(x_d,x_d) \end{bmatrix}
Σ
=
⎣
⎢
⎡
σ
(
x
1
,
x
1
)
⋮
σ
(
x
d
,
x
1
)
⋯
⋱
⋯
σ
(
x
1
,
x
d
)
⋮
σ
(
x
d
,
x
d
)
⎦
⎥
⎤
根据上述协方差矩阵的定义,矩阵
S=\begin{bmatrix}s_1 & 0 \\ 0 & s_2\end{bmatrix}=\begin{bmatrix}1 & 0 \\ 0 & \frac{1}{2}\end{bmatrix}
S
=
[
s
1
0
0
s
2
]
=
[
1
0
0
2
1
]
旋转矩阵(rotation matrix):
R=\begin{bmatrix} \cos{\theta} & -\sin{\theta} \\ \sin{\theta} & \cos{\theta} \end{bmatrix}=\begin{bmatrix} \cos{\frac{\pi}{6}} & -\sin{\frac{\pi}{6}} \\ \sin{\frac{\pi}{6}} & \cos{\frac{\pi}{6}} \end{bmatrix}=\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} &\frac{\sqrt{3}}{2} \end{bmatrix}
R
=
[
cos
θ
sin
θ
−
sin
θ
cos
θ
]
=
[
cos
6
π
sin
6
π
−
sin
6
π
cos
6
π
]
=
[
2
3
2
1
−
2
1
2
3
]
A=RS=\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{4} \\ \frac{1}{2} &\frac{\sqrt{3}}{4} \end{bmatrix}
A
=
R
S
=
[
2
3
2
1
−
4
1
4