添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Se Pu. 2023 Aug 8; 41(8): 651–661.
PMCID: PMC10398830

Language: Chinese | English

金属有机框架分子印迹材料的应用进展

Recent advances in the applications of metal-organic frameworks-based molecularly imprinted materials

Wei LIU

1.长春中医药大学药学院,吉林 长春 130017

Find articles by Wei LIU

Dongxue JIA

1.长春中医药大学药学院,吉林 长春 130017

Find articles by Dongxue JIA

Wenhui LIAN

2.长春中医药大学吉林省人参科学研究院,吉林 长春 130017

Find articles by Wenhui LIAN

Yu ZHAO

2.长春中医药大学吉林省人参科学研究院,吉林 长春 130017 1.长春中医药大学药学院,吉林 长春 130017 2.长春中医药大学吉林省人参科学研究院,吉林 长春 130017

* Tel:(0431)86173805,E-mail: moc.621@4101iuhnewnail (连文慧);
AnalyteSensorLOD/
(mol/L) Linear range/
(mol/L) SamplesRef.In-situ polymerizationbisphenol ACMOF-MIPIL/GCE4.0×10 -6 5.0×10 -9 -5.0×10 -6 lake river[ 30 ]ElectropolymerizationoxaliplatinMIP-Ag@Cu-BDC/N-
CNTs/GCE0.016 * 0.056-200 * pharmaceutical
injections, human
plasma, human urine[ 42 ]Molecular self-assemblyisoproturonAu@HKUST-1@MIP4.5×10 -10 1.0×10 -9 -4.5×10 -5 water[ 43 ]ElectropolymerizationatropineMSN@ZIF-8@MIP9.8×10 -10 5.0×10 -9 -9.5×10 -6 human serum, human
urine, beef, cereals[ 46 ]Electropolymerizationcarcinoembry-
onic antigenMIP/CS/Co MOF-IL/SPCE2.4×10 -5 1.0×10 -4 -10 * human serum[ 47 ]Surface coatingnitrofurazoneBC/Cr 2 O 3 /Ag/MIP/GCE3.0×10 -9 5×10 -9 -1×10 -5 human urine, human
blood[ 49 ]ElectropolymerizationchloronebMIP/CoS/ZnS8.7×10 -10 3×10 -9 -2×10 -7 licorice, cucumber,
river water, soil[ 51 ]Molecular self-assemblyfurosemideC 3 N 4 @ZIF-8@MIP@GCE8.0×10 -9 8.0×10 -8 -1.0×10 -4 human urine[ 96 ]Surface coatingketamineKT-MIM/G@MOFs/SPE4.0×10 -11 1.0×10 -10 -4.0×10 -5 human urine, saliva[ 97 ]ElectropolymerizationthimerosalAu@4-ATP@MIP3.5×10 -14 8.0×10 -13 -8.0×10 -11 chloramphenicol
eye drop[ 98 ]Electropolymerizationhygromycin BMIP@Cu-MOF@Ti 3 C 2 T x 1.92×10 -9 5×10 -9 -5×10 -6 pork, chicken, fish[ 99 ]Surface coatingfenamiphosMIP-Au@MOF-235@g-C 3 N 4 7.13×10 -3 1.0×10 -8 -1.64×10 -5 human plasma, tomato,
orange juice, lettuce[ 100 ]ElectropolymerizationquercetinMIP/MIL-101(Cr)/MoS 2 /
GCE6.0×10 -8 1.0×10 -7 -1.05×10 -5 ,
1.05×10 -5 -7.0×10 -4 honey[ 101 ]ElectropolymerizationpregabalinGCE/Cu-BTC/ePDA-MIP2.9×10 -15 5.0×10 -14 -8.0×10 -10 human serum, human
urine[ 102 ]Electropolymerizationclenbuterol
hydrochloride
and ractopamineN@Fe-MOF@C-DTMIP3.03×10 -13 1.0×10 -12 -8×10 -9 human urine, pork[ 103 ]Surface coatinghemoglobinAuE/Ag-MOF@MC-MIPs9.0×10 -14 2.0×10 -13 -1.0×10 -6 human blood[ 104 ]Molecular self-assemblycarbendazimHKUST-1@MIP2.0×10 -9 1.0×10 -8 -5.0×10 -5 apple juice, cucumber
juice, tomato juice,
tangerine juice[ 105 ]Electropolymerizationpatulin mycotoxinMIP/Au@PANI/SeS 2 @Co6.6×10 -13 1.0×10 -12 -1.0×10 -9 apple juice[ 106 ]ElectropolymerizationlidocaineMIP/PC/GCE6.0×10 -11 2.0×10 -10 -8.0×10 -6 rat serum[ 107 ]

* Content unit, ng/mL.

2.5.1 药物分析

研究者通常采用色谱法、质谱法等手段对药物进行分析检测,但以上方法存在仪器成本高、预处理较为复杂、操作繁琐及有机溶剂用量较多等缺点,分子印迹电化学传感器因灵敏度高、选择性强、稳定性好等特点,为药物分析提供了一种新的思路。Huang课题组 [ 108 ] 构建了以AuNPs和钴铁基-金属有机框架(CoFe-MOFs)支撑聚吡咯(Ppy)基的三明治夹心结构传感器(MIP@CoFe-MOFs@AuNPs),用于检测诺氟沙星(NOR)。经CoFe-MOFs/AuNPs修饰的MIP传感器的有效表面积是未经修饰MIP传感器的2.2倍,并成功应用于实际样品中NOR的检测。

2.5.2 环境检测

随着环境中有毒有害污染物的与日俱增,人体健康受到的威胁越来越大,建立环境污染物的高效检测方法显得尤为重要。而分子印迹电化学传感器因其突出优势在众多检测方法中脱颖而出。

Gao等 [ 109 ] 利用热聚合法制备了一种用于特异性识别邻苯二甲酸二辛酯(DOP)的分子印迹光电化学传感器。MOF通过简单的浸渍法涂覆在Cu 2 O上形成异质结构,用Cu 2 O半导体和MOF的异质结构作为DOP印迹光电化学传感器的平台。该方法在实际样品分析中具有良好的灵敏度、稳定性、选择性和重现性,MOF的异质结构在光电化学分析领域具有广阔的应用前景。

Li课题组制备了一系列分子印迹复合材料 [ 110 , - 114 ] 。该课题组构建了一种新型IL复合的金属有机框架分子印迹电化学传感器(CMOFMIPIL),用于双酚A的高灵敏度检测 [ 30 ] ,检测范围为0.005~5.0 μmol/L,检出限为4.0 nmol/L。该方法成功用于湖水、河水中双酚A的检测。

喻派等 [ 115 ] 开发了一种能富集和快速检测印染水体中痕量偶氮染料活性艳红(K-2BP)的分子印迹电化学传感器(K-2BP-MIP@AlxFey-MOF),该传感器对K-2BP表现出特异性的识别能力。

2.5.3 临床药物监测

由于临床药物基质复杂、药物浓度低,MOFs基分子印迹传感器同时具备高选择性、低检出限的优势,为临床药物监测提供了新的思路。

Cheng等 [ 49 ] 提出了一种BC/Cr 2 O 3 /Ag纳米复合材料修饰的分子印迹电化学传感器,用于呋喃西林的快速检测。首先将银纳米粒子负载在MOFs(Cr-MIL-101)上,然后引入生物炭高温煅烧合成了BC/Cr 2 O 3 /Ag纳米复合材料。来自MOF的Cr 2 O 3 /Ag不仅扩大了电极的有效表面积,而且增强了电流响应。以甲基丙烯酸和丙烯酰胺为双功能单体,呋喃西林为模板分子,在BC/Cr 2 O 3 /Ag上印迹聚合,并通过差分脉冲伏安法对呋喃西林进行检测。该传感器已成功用于人血、尿液以及药物中呋喃西林的快速检测。

Rawool等 [ 44 ] 报道了一种双模板印迹策略的电化学传感器,用于同时检测利福平(RIF)和异烟肼(INZ)。首先采用Cu-MOF与介孔碳对玻碳电极进行修饰,然后通过氢键作用将双模板分子RIF和INZ印迹薄膜沉积在电极表面。该传感器可实现在较宽的线性范围内(0.08~85 mol/L)测定RIF和INZ,其检出限分别为0.28 nmol/L和0.37 nmol/L。此外,该传感器还成功用于血清和尿液样品中RIF和INZ的同时测定。

Wang等 [ 96 ] 开发了一种C 3 N 4 /ZIF-8@MIP分子印迹电化学传感器,用于检测呋塞米。将MOF(ZIF-8)作为基底,在其表面生成印迹薄膜,之后与C 3 N 4 结合修饰玻碳电极。C 3 N 4 纳米片与ZIF-8不仅增强了传感系统的导电性,而且增加了分子印迹腔的数量。该方法成功用于呋塞米利尿剂的实时监测和兴奋剂的检测。

Fu等 [ 97 ] 采用紫外引发技术制备了一种快速检测氯胺酮的分子印迹电化学传感器。以石墨烯和金属有机框架作为基底,支撑起分子印迹聚合物。在石墨烯和MOF的共同作用下,该传感器具有较高的灵敏度,同时还具有较低的检出限(4.0×10 -11 mol/L)和优异的选择性,并成功用于人体血液和尿液中氯胺酮的测定。

2.5.4 食品安全检测

食品安全问题一直备受关注,研究者一直致力于食品安全检测方法的开发。因食品样品基质复杂,准确检测目标物具有一定的挑战性。

Hatamluyi等 [ 116 ] 报道了一种用于超灵敏检测棒曲霉素的电化学传感器,首先在电极表面修饰氮掺杂的石墨烯量子点和金纳米粒子功能化的铜-金属有机框架;然后利用原位电聚合法在其表面生长出一层分子印迹聚合物。铜-金属有机框架的独特结构为分子印迹层提供了更大的表面积,有效地增加了聚合物上的结合位点,所制备的分子印迹传感器具有宽的线性范围(0.001~70.0 ng/mL)及较低的检出限(0.0007 ng/mL)。

Gan等 [ 117 ] 报道了一种三维网络分子印迹电化学传感器,以实现对食品中茶碱的高效和特异性检测。介孔二氧化硅纳米球(MSN)用以传输电信号,以茶碱作为模板分子,苯基三乙氧基硅烷和吡咯作为功能单体,在电极表面合成了分子印迹膜。该印迹材料具有高电导率和电子转移能力,对茶碱具有优异的灵敏度和结合力,线性动态浓度范围超过6个数量级,检出限低(0.66 nmol/L),满足茶碱痕量分析的要求。

3 总结和展望

由于MOFs具有可变的金属中心及有机配体,并可与多种材料复合,研究者不断致力于功能化MOFs的制备及应用。本文评述了基于MOFs分子印迹材料在催化、样品前处理、药物载体及传感器领域的研究现状,并对以后的研究提出以下展望:(1)基于MOFs分子印迹材料在电化学传感器中的应用报道逐渐增多,但在荧光传感器中的研究关注度不够,应多尝试发光MOFs的荧光传感器研究,或者通过引入荧光材料,进一步提升MOFs在荧光传感器中的应用潜力。此外,在化学传感器中的应用还需进一步探索和开发用于直接定性定量分析的方法。(2)在催化领域使用的MOFs基分子印迹材料回收时一般通过高速离心分离或过滤的方式,但高速离心会造成材料损失和活性降低,因此该材料在催化领域的应用有待进一步探究。(3)由于MOFs的孔径较小,不利于大分子化合物的扩散和传质,因此MOFs在大分子化合物吸附与去除方面的应用有待突破。(4)研究者已在MOFs分子印迹材料的实际应用中做出了一些尝试,若能构建便携式传感器或商用传感器,将会极大地增加MOFs基分子印迹传感器的实用性。

参考文献:

[1] Bai H, Wang C, Chen J, et al.. Biosens Bioelectron , 2015, 64 : 352 [ PubMed ] [ Google Scholar ]
[2] Hashemi M, Nazari Z, Bigdelifam D, et al.. Microchim Acta , 201 , 184 ( 8 ): 2523 [ Google Scholar ]
[3] Sanad M F, Santiago A R P, Tolba S A, et al.. J Am Chem Soc , 2021, 143 ( 10 ): 4064 [ PubMed ] [ Google Scholar ]
[4] Nezhadali A, Senobari S, Mojarrab M, et al.. Talanta , 2016, 146 : 525 [ PubMed ] [ Google Scholar ]
[5] Bodoki A E, Iacob B C, Dinte E, et al.. Polymers , 2021, 13 ( 21 ): 3649 [ PMC free article ] [ PubMed ] [ Google Scholar ]
[6] Yang M, Gu W, Sun L, et al.. Talanta , 2010, 81 ( 1/2 ): 156 [ PubMed ] [ Google Scholar ]
[7] Speltini A, Scalabrini A, Maraschi F, et al.. Anal Chim Acta , 2017, 974 : 1 [ PubMed ] [ Google Scholar ]
[8] Zheng P L, Luo Z M, Chang R M, et al.. Chinese Journal of Chromatography , 2015, 33 ( 9 ): 957 [ PubMed ] [ Google Scholar ] et al.. 2015, 33 ( 9 ): 957 [ Google Scholar ]
[9] Huang W W, Zhao Q Y, Yang X, et al.. Chinese Journal of Chromatography , 2019, 37 ( 7 ): 673 [ PubMed ] [ Google Scholar ] et al.. 2019, 37 ( 7 ): 673 [ Google Scholar ]
[10] Xu L, Zhao Z X, Huang Y A, et al.. Molecules , 2020, 25 ( 2 ): 312 [ PMC free article ] [ PubMed ] [ Google Scholar ]
[11] Kazemifard N, Ensafi A A, Saberi Z, et al.. Methods in Molecular Biology , 2020, 2135 : 275 [ PubMed ] [ Google Scholar ]
[12] Iskierko Z, Sharma P S, Prochowicz D, et al.. ACS Appl Mater Inter , 2016, 8 ( 31 ): 19860 [ PubMed ] [ Google Scholar ]
[13] Shang W W, Suo D C, Li T, et al.. Chinese Journal of Chromatography , 2022, 40 ( 8 ): 712 [ PMC free article ] [ PubMed ] [ Google Scholar ] et al.. 2022, 40 ( 8 ): 712 [ Google Scholar ]
[14] Kuang Y X, Zhou S X, Hu Y L, et al.. Chinese Journal of Chromatography , 2022, 40 ( 10 ): 882 [ PMC free article ] [ PubMed ] [ Google Scholar ] et al.. 2022, 40 ( 10 ): 882 [ Google Scholar ]
[15] Qiao J, Qi L. Chinese Sci Bull , 2018, 64 ( 13 ): 1330 [ Google Scholar ]
[16] Wang X, Li J, Chen L, et al.. Chinese Sci Bull , 2019, 64 ( 13 ): 1352 [ Google Scholar ]
[17] Guo Z Z, Xing R R, He H, et al.. Chinese Sci Bull , 2019, 64 ( 13 ): 1418 [ Google Scholar ]
[18] Wang S, Lu X, Cheng J, et al.. Chinese Sci Bull , 2019, 64 ( 13 ): 1340 [ Google Scholar ]
[19] Li M, Zhao M, Zhai J, et al.. Chinese Sci Bull , 2019, 64 ( 13 ): 1321 [ Google Scholar ]
[20] Zhang P, Jiang L Y, Ma J T, et al.. Chinese Journal of Analytical Chemistry , 2021, 49 ( 1 ): 24 [ Google Scholar ]
[21] Çorman M E, Ozcelikay G, Cetinkaya A, et al.. TrAC-Trends Anal Chem , 2022, 150 : 116573 [ Google Scholar ]
[22] Zhang H, Li G, Zhang K, et al.. Acta Chim Sinica , 2017, 75 ( 9 ): 841 [ Google Scholar ]
[23] Phan A, Doonan C J, Uribe-Romo F J, et al.. Accounts Chem Res , 2010, 43 ( 1 ): 58 [ PubMed ] [ Google Scholar ]
[24] Fairen-Jimenez D, Moggach S A, Wharmby M T, et al.. J Am Chem Soc , 2011, 133 ( 23 ): 8900 [ PubMed ] [ Google Scholar ]
[25] Ferey G, Serre C. Chem Soc Rev , 2009, 38 ( 5 ): 1380 [ PubMed ] [ Google Scholar ]
[26] Yang Q, Wiersum A D, Jobic H, et al.. J Phys Chem C , 2011, 115 ( 28 ): 13768 [ Google Scholar ]
[27] Ramsahye N A, Gao J, Jobic H, et al.. J Phys Chem C , 2014, 118 ( 47 ): 27470 [ Google Scholar ]
[28] Feng J J, Ji X P, Li C Y, Chinese Journal of Chromatography , 2021, 39 ( 8 ): 781 [ PMC free article ] [ PubMed ] [ Google Scholar ] 2021, 39 ( 8 ): 781 [ Google Scholar ]
[29] Gao Q, Zhao Y, Gong J, et al.. Anal Methods , 2022, 14 ( 41 ): 4095 [ PubMed ] [ Google Scholar ]
[30] Lei X, Deng Z, Zeng Y, et al.. Sensor Act B: Chem , 2021, 339 : 129885 [ Google Scholar ]
[31] Yang Y, Yan W, Wang X, et al.. Biosens Bioelectron , 2021, 177 : 113000 [ PubMed ] [ Google Scholar ]
[32] Du Q, Wu P, Hu F, et al.. New J Chem , 2019, 43 ( 18 ): 7044 [ Google Scholar ]
[33] Yahyapour M, Ranjbar M, Mohadesi A, et al.. J Mater Sci: Mater El , 2021, 32 ( 3 ): 3180 [ Google Scholar ]
[34] Han S, Song Y, Liu S, et al.. Eur Polym J , 2022, 171 : 111219 [ Google Scholar ]
[35] Erk N, Mehmandoust M, Soylak M, et al.. Biosensors-Basel , 2022, 12 ( 9 ): 769 [ PMC free article ] [ PubMed ] [ Google Scholar ]
[36] Amirzehni M, Hassanzadeh J, Vahid B, et al.. Sensor Actuat B: Chem , 2020, 325 : 128768 [ Google Scholar ]
[37] Fu D, Chen T, Liu H, et al.. Sensors and Actuators B: Chemical , 2022, 361 : 131659 [ Google Scholar ]
[38] Afshar E A, Taher M A, Karimi F, et al.. Chemosphere , 2022, 295 : 133869 [ PubMed ] [ Google Scholar ]
[39] Chen Z F, Wu Y Y, Tan X C, et al.. Chinese Journal of Chromatography , 2022, 40 ( 6 ): 556 [ PMC free article ] [ PubMed ] [ Google Scholar ] et al.. 2022, 40 ( 6 ): 556 [ Google Scholar ]
[40] Li D P, Xie G S, Xie P S, et al.. Chinese Journal of Chromatography , 2021, 39 ( 3 ): 205 [ PMC free article ] [ PubMed ] [ Google Scholar ] et al.. 2021, 39 ( 3 ): 205 [ Google Scholar ]
[41] Bagheri N, Khataee A, Habibi B, et al.. Talanta , 2018, 179 : 710 [ PubMed ] [ Google Scholar ]
[42] Mahnashi M H, Mahmoud A M, Alhazzani K, et al.. Microchim Acta , 2021, 188 ( 4 ): 124 [ PubMed ] [ Google Scholar ]
[43] Liu X, Chen L, Gao Y, et al.. J Environ Chem Eng , 2022, 10 ( 3 ): 107661 [ Google Scholar ]
[44] Rawool C R, Srivastava A K. Sensor Actuat B: Chem , 2019, 288 : 493 [ Google Scholar ]
[45] Lu H, Liu M, Cui H, et al.. Electrochim Acta , 2022, 427 : 140858 [ Google Scholar ]
[46] Sun J, Zhang L, Liu X, et al.. J Electroanal Chem , 2021, 903 : 115843 [ Google Scholar ]
[47] Luo A, Cai Y, Liu M, et al.. J Electrochem Soc , 2022, 169 ( 11 ): 117504 [ Google Scholar ]
[48] Huang Y, Wang R. J Mater Chem A , 2019, 7 ( 19 ): 12105 [ Google Scholar ]
[49] Cheng J, Li Y, Zhong J, et al.Chem Eng J, 2020, 398 : 125664 [ Google Scholar ]
[50] Bu L, Jiang D, Song Q, et al.. Analyst , 2022, 147 ( 22 ): 5194 [ PubMed ] [ Google Scholar ]
[51] Duan D, Ye J, Cai X, et al.. Microchim Acta , 2021, 188 ( 4 ): 111 [ PubMed ] [ Google Scholar ]
[52] Iskierko Z, Sharma P S, Prochowicz D, et al.. ACS Appl Mater Inter , 2016, 8 ( 31 ): 19860 [ PubMed ] [ Google Scholar ]
[53] Kang X, Li L, Sheveleva A, et al.. Nat Commun , 2020, 11 ( 1 ): 1 [ PMC free article ] [ PubMed ] [ Google Scholar ]
[54] Tan X, Yu C, Zhao C, et al.. ACS Appl Mater & Inter , 2019, 11 ( 10 ): 9904 [ PubMed ] [ Google Scholar ]
[55] Qiu Q, Wang T, Jing L, et al.. Int J Hydrogen Energ , 2020, 45 ( 19 ): 11077 [ Google Scholar ]
[56] Chen T, Zhang A, Cheng Y, et al.. Biosens Bioelectron , 2021, 188 : 113355 [ PubMed ] [ Google Scholar ]
[57] Ding S, Wan J, Ma Y, et al.. Chemosphere , 2021, 270 : 128620 [ PubMed ] [ Google Scholar ]
[58] Ding S, Wan J, Wang Y, et al.Chem Eng J, 2021, 422 : 130406 [ Google Scholar ]
[59] Bagheri N, Habibi B, Khataee A, et al.. Talanta , 2019, 201 : 286 [ PubMed ] [ Google Scholar ]
[60] Wei F, He Y, Qu X, et al.. Anal Chim Acta , 2019, 1078 : 70 [ PubMed ] [ Google Scholar ]
[61] Susanti I, Hasanah A N. Polym Advan Technol , 2021, 32 ( 5 ): 1965 [ Google Scholar ]
[62] Rahimpoor R, Firoozichahak A, Alizadeh S, et al.RSC Adv, 2022, 12 ( 25 ): 16267 [ PMC free article ] [ PubMed ] [ Google Scholar ]
[63] Chen Y, Zhang Q, Liang H B, et al.. Chinese Fuel Chemistry , 2018, 46 ( 9 ): 1130 [ Google Scholar ] et al.. 燃料化学学报 , 2018, 46 ( 9 ): 1130 [ Google Scholar ]
[64] Alilou S, Amirzehni M, Eslami P A, et al.. Talanta , 2021, 235 : 122709 [ PubMed ] [ Google Scholar ]
[65] Wei Z H, Zhang R R, Mu L N, et al.. Eur Polym J , 2019, 121 : 109301 [ Google Scholar ]
[66] Li J, Ma M, Zhang C, et al.. Anal Bioanal Chem , 2020, 412 ( 26 ): 7227 [ PubMed ] [ Google Scholar ]
[67] Huang Y, Wang R. Chem Eng J , 2019, 378 : 122084 [ Google Scholar ]
[68] Huang Y, Wang R. Ind Eng Chem Res , 2019, 58 ( 27 ): 12216 [ Google Scholar ]
[69] Huang Y, Su W, Wang R, et al.. Aerosol Air Qual Res , 2019, 19 ( 9 ): 2130 [ Google Scholar ]
[70] Huang Y, Wang R. Curr Org Chem , 2018, 22 ( 16 ): 1600 [ Google Scholar ]
[71] Wan S, Xu O, Song H, et al.. Anal Methods , 2022, 14 ( 19 ): 1904 [ PubMed ] [ Google Scholar ]
[72] Asfaram A, Ghaedi M, Dashtian K, et al.. Ultrason Sonochem , 2017, 34 : 561 [ PubMed ] [ Google Scholar ]
[73] Firoozichahak A, Rahmani A, Mehregan F, et al.. J Chromatogr B , 2022, 1207 : 123364 [ PubMed ] [ Google Scholar ]
[74] Zhang Q, Wang H, Zhang Y, et al.. Foods , 2022, 11 ( 10 ): 1408 [ Google Scholar ]
[75] Wang S, Yang X, Lu W, et al.. J Drug Deliv Sci Tec , 2021, 64 : 102593 [ Google Scholar ]
[76] Chen G, Luo J, Cai M, et al.. Molecules , 2019, 24 ( 18 ): 3369 [ PMC free article ] [ PubMed ] [ Google Scholar ]
[77] Lin S, Liu X, Tan L, et al.. ACS Appl Mater Inter , 2017, 9 ( 22 ): 19248 [ PubMed ] [ Google Scholar ]
[78] Zhang L P, Mo C E, Huang Y P, et al.. Part Part Syst Char , 2019, 36 ( 1 ): 1800355 [ Google Scholar ]
[79] Shi Y, Wang Y, Zhu J, et al.. Nanomaterials-Basel , 2020, 10 ( 9 ): 1655 [ PMC free article ] [ PubMed ] [ Google Scholar ]
[80] Yu Q, Peng Y, Cao Q, et al.. Sensor Actuat B-Chem , 2022, 365 : 131949 [ Google Scholar ]
[81] Qu S, Song N, Xu G, et al.. Sensor Actuat B-Chem , 2019, 290 : 9 [ Google Scholar ]
[82] Qu S, Li Z, Jia Q, et al.. ACS Appl Mater Inter , 2019, 11 ( 37 ): 34196 [ PubMed ] [ Google Scholar ]
[83] Deng J, Wang K, Wang M, et al.. J Am Chem Soc , 2017, 139 ( 16 ): 5877 [ PubMed ] [ Google Scholar ]
[84] Yang J, Dai Y, Zhu X, et al.. J Mater Chem A , 2015, 3 ( 14 ): 7445 [ Google Scholar ]
[85] Ji G, Liu J, Gao X, et al.. J Mater Chem A , 2017, 5 ( 21 ): 10200 [ Google Scholar ]
[86] Li Q, Wu X, Huang X, et al.. ACS Appl Mater Inter , 2018, 10 ( 4 ): 3801 [ PubMed ] [ Google Scholar ]
[87] Zhang Z, Liu Y, Huang P, et al.. Talanta , 2021, 232 : 122411 [ PubMed ] [ Google Scholar ]
[88] Eskandari H, Amirzehni M, Hassanzadeh J, et al.. Microchim Acta , 2020, 187 ( 12 ): 673 [ PubMed ] [ Google Scholar ]
[89] Yu Q, Li Z, Cao Q, et al.. TrAC-Trends Anal Chem , 2020, 129 : 115939 [ Google Scholar ]
[90] Xu L, Pan M, Fang G, et al.. Sensor Actuat B: Chemical , 2019, 286 : 321 [ Google Scholar ]
[91] Pirot S M, Omer K M. Microchem J , 2022, 182 : 107921 [ Google Scholar ]
[92] Luo L, Zhang F, Chen C, et al.. Anal Chem , 2019, 91 ( 24 ): 15748 [ PubMed ] [ Google Scholar ]
[93] Luo L, Zhang F, Chen C, et al.. Microchim Acta , 2020, 187 ( 2 ): 140 [ PubMed ] [ Google Scholar ]
[94] Yang J, Feng W, Liang K, et al.. Talanta , 2020, 212 : 120744 [ PubMed ] [ Google Scholar ]
[95] Wang L, Liang K, Feng W, et al.Microchem J, 2021, 164 : 106047 [ Google Scholar ]
[96] Wang Y, Cheng J, Liu X, et al.. ACS Sustain Chem Eng , 2018, 6 ( 12 ): 16847 [ Google Scholar ]
[97] Fu K, Zhang R, He J, et al.. Biosens Bioelectron , 2019, 143 : 111636 [ PubMed ] [ Google Scholar ]
[98] Wei X, Wu T, Yuan Y, et al.. Anal Methods , 2017, 9 ( 11 ): 1771 [ Google Scholar ]
[99] Wang H, Cai L, Wang Y, et al.. Food Chem , 2022, 383 : 132382 [ PubMed ] [ Google Scholar ]
[100] Mehmandoust M, Erk N, Naser M, et al.. Food Chem , 2023, 404 : 134627 [ PubMed ] [ Google Scholar ]
[101] Zhang W, Zong L, Geng G, et al.. Sensor Actuat B: Chem , 2018, 257 : 1099 [ Google Scholar ]
[102] Zalpour N, Roushani M, Hosseini H, et al.. Sensor Actuat B: Chem , 2022, 370 : 132418 [ Google Scholar ]
[103] Li X, Li Y, Yu P, et al.. Analyst , 2021, 146 ( 20 ): 6323 [ PubMed ] [ Google Scholar ]
[104] Mandani S, Rezaei B, Ensafi A A, et al.. Anal Bioanal Chem , 2021, 413 ( 19 ): 4895 [ PubMed ] [ Google Scholar ]
[105] Beigmoradi F, Rohani Moghadam M, Bazmandegan-Shamili A, et al.Microchem J, 2022, 179 : 107633 [ Google Scholar ]
[106] Selvam S P, Kadam A N, Maiyelvaganan K R, et al.. Biosens Bioelectron , 2021, 187 : 113302 [ PubMed ] [ Google Scholar ]
[107] Zhang J, Liu J, Zhang Y, et al.. Microchim Acta , 2017, 185 ( 1 ): 78 [ Google Scholar ]
[108] Ye C, Chen X, Zhang D, et al.. Electrochim Acta , 2021, 379 : 138174 [ Google Scholar ]
[109] Gao P W, Shen Y Z, Ma C, et al.. Analyst , 2021, 146 ( 20 ): 6178 [ PubMed ] [ Google Scholar ]
[110] Lu Y, Hu J, Zeng Y, et al.. Sensor Actuat B-Chem , 2020, 311 : 127911 [ Google Scholar ]
[111] Lu X, Yang Y, Zeng Y, et al.. Biosens Bioelectron , 2018, 99 : 47 [ PubMed ] [ Google Scholar ]
[112] Yang Y, Zeng Y, Tang C, et al.. Microchim Acta , 2018, 185 ( 4 ): 219 [ PubMed ] [ Google Scholar ]
[113] Tang H, Chen J, Zeng Y, et al.. Anal Methods , 2016, 8 ( 7 ): 1681 [ Google Scholar ]
[114] Chen J, Huang H, Zeng Y, et al.. Biosens Bioelectron , 2015, 65 : 366 [ PubMed ] [ Google Scholar ]
[115] Yu P, Li X, Ran T M, et al.. Chinese Journal of Analytical Sciences , 2022, 38 ( 4 ): 468 [ Google Scholar ] et al.. 分析科学学报 , 2022, 38 ( 4 ): 468 [ Google Scholar ]
[116] Hatamluyi B, Rezayi M, Beheshti H R, et al.. Sensor Actuat B-Chem , 2020, 318 : 128219 [ Google Scholar ]
[117] Gan T, Li J, Zhao A, et al.. Food Chem , 2018, 268 : 1 [ PubMed ] [ Google Scholar ]

Articles from Chinese Journal of Chromatography are provided here courtesy of Editorial Office of Chinese Journal of Chromatography