添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
小眼睛的红豆  ·  VIVADO DRC REQP-52 - ...·  1 周前    · 
可爱的勺子  ·  Android WiFiManager ...·  8 月前    · 
买醉的吐司  ·  C++ 函数 | 菜鸟教程·  1 年前    · 
豪情万千的芹菜  ·  Kafka producer is ...·  1 年前    · 

AttributeError: 'ModbusSerialClient' object has no attribute 'last_response'

时间: 2023-06-21 12:23:05 浏览: 115
很抱歉,我的回答中有误。实际上,`ModbusSerialClient` [对象](https://geek.csdn.net/educolumn/04c51611e4b730957464192e0307b82c?spm=1055.2569.3001.10083)没有 `last_response` 属性。如果要获取完整的 Modbus 报文,可以使用 `ModbusSerialClient` [对象](https://geek.csdn.net/educolumn/04c51611e4b730957464192e0307b82c?spm=1055.2569.3001.10083)的 `_last_frame` 属性。以下是修改后的示例[代码](https://geek.csdn.net/educolumn/1572ef9b473b4e00f6b2bf6d428b7c27?spm=1055.2569.3001.10083): ```python from pymodbus.client.sync import ModbusSerialClient from pymodbus.constants import Endian from pymodbus.payload import BinaryPayloadDecoder # 创建Modbus串口客户端 client = ModbusSerialClient(method='rtu', port='/dev/ttyUSB0', baudrate=9600) # 连接到Modbus设备 client.connect() # 读取Modbus[信号](https://geek.csdn.net/educolumn/05057486f43155154a04d7d84a955d04?spm=1055.2569.3001.10083) response = client.read_holding_registers(address=0, count=2, unit=1) # 解码Modbus[信号](https://geek.csdn.net/educolumn/05057486f43155154a04d7d84a955d04?spm=1055.2569.3001.10083) decoder = BinaryPayloadDecoder.fromRegisters(response.registers, Endian.Big) data = decoder.decode_32bit_float() # 获取完整的Modbus报文 full_message = client._last_frame # 断开Modbus连接 client. ```

相关推荐

url = "http://www.greenfinance.org.cn/" # 发送HTTP请求,获取网页HTML代码 response = requests.get(url) html = response.content # 使用BeautifulSoup解析HTML代码 soup = BeautifulSoup(html, 'html.parser') # 查找包含政策数据的HTML元素 policy_section = soup.find('div', class_='policy-section') # 查找政策标题和内容 policy_titles = policy_section.find_all('h3') policy_contents = policy_section.find_all('p') print(policy_section) # 输出政策数据 for i in range(len(policy_titles)): print(policy_titles[i].text) print(policy_contents[i].text) print() Traceback (most recent call last): File "/var/folders/wj/mvzl124x2xv1ywq89bjh3qkm0000gn/T/ipykernel_71039/3485610234.py", line 14, in <module> policy_titles = policy_section.find_all('h3') AttributeError: 'NoneType' object has no attribute 'find_all' url = "http://www.greenfinance.org.cn/" # 发送HTTP请求,获取网页HTML代码 response = requests.get(url) html = response.content # 使用BeautifulSoup解析HTML代码 soup = BeautifulSoup(html, 'html.parser') # 查找包含政策数据的HTML元素 policy_section = soup.find('div', class_='policy-section') # 打印policy_section的值 print(policy_section) # 查找政策标题和内容 policy_titles = policy_section.find_all('h3') policy_contents = policy_section.find_all('p') # 输出政策数据 for i in range(len(policy_titles)): print(policy_titles[i].text) print(policy_contents[i].text) print() None Traceback (most recent call last): File "/var/folders/wj/mvzl124x2xv1ywq89bjh3qkm0000gn/T/ipykernel_71039/3956965668.py", line 17, in <module> policy_titles = policy_section.find_all('h3') AttributeError: 'NoneType' object has no attribute 'find_all'

最新推荐

recommend-type

决策概率论,一文读懂群体决策概率与个体决策概率的关系

有一本书叫做《乌合之众》把群体批得一无是处,然而另一本书《群体的智慧》又阐述群体是有智慧的,群体越大,智慧越高。 读了这篇决策概率论的文章,让你对于群体和个体不再迷茫。
recommend-type

Java项目-基于微信小程序的微信点餐系统(包括源码,数据库,教程).zip

Java毕设,小程序毕业设计,小程序课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 1. 技术组成 前端: 小程序 后台框架:SSM/SpringBoot(如果有的话) 开发环境:idea,微信开发者工具 数据库:MySql(建议用 5.7 版本,8.0 有时候会有坑) 数据库可视化工具:使用 Navicat 部署环境:Tomcat(建议用 7.x 或者 8.x 版本),maven
recommend-type

多模态联合稀疏表示在视频目标跟踪中的应用

"该资源是一篇关于多模态联合稀疏表示在视频目标跟踪中的应用的学术论文,由段喜萍、刘家锋和唐降龙撰写,发表在中国科技论文在线。文章探讨了在复杂场景下,如何利用多模态特征提高目标跟踪的精度,提出了联合稀疏表示的方法,并在粒子滤波框架下进行了实现。实验结果显示,这种方法相比于单模态和多模态独立稀疏表示的跟踪算法,具有更高的精度。" 在计算机视觉领域,视频目标跟踪是一项关键任务,尤其在复杂的环境条件下,如何准确地定位并追踪目标是一项挑战。传统的单模态特征,如颜色、纹理或形状,可能不足以区分目标与背景,导致跟踪性能下降。针对这一问题,该论文提出了基于多模态联合稀疏表示的跟踪策略。 联合稀疏表示是一种将不同模态的特征融合在一起,以增强表示的稳定性和鲁棒性的方式。在该方法中,作者考虑到了分别对每种模态进行稀疏表示可能导致的不稳定性,以及不同模态之间的相关性。他们采用粒子滤波框架来实施这一策略,粒子滤波是一种递归的贝叶斯方法,适用于非线性、非高斯状态估计问题。 在跟踪过程中,每个粒子代表一种可能的目标状态,其多模态特征被联合稀疏表示,以促使所有模态特征产生相似的稀疏模式。通过计算粒子的各模态重建误差,可以评估每个粒子的观察概率。最终,选择观察概率最大的粒子作为当前目标状态的估计。这种方法的优势在于,它不仅结合了多模态信息,还利用稀疏表示提高了特征区分度,从而提高了跟踪精度。 实验部分对比了基于本文方法与其他基于单模态和多模态独立稀疏表示的跟踪算法,结果证实了本文方法在精度上的优越性。这表明,多模态联合稀疏表示在处理复杂场景的目标跟踪时,能有效提升跟踪效果,对于未来的研究和实际应用具有重要的参考价值。 关键词涉及的领域包括计算机视觉、目标跟踪、粒子滤波和稀疏表示,这些都是视频分析和模式识别领域的核心概念。通过深入理解和应用这些技术,可以进一步优化目标检测和跟踪算法,适应更广泛的环境和应用场景。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

文本摘要革命:神经网络如何简化新闻制作流程

![文本摘要革命:神经网络如何简化新闻制作流程](https://img-blog.csdnimg.cn/6d65ed8c20584c908173dd8132bb2ffe.png) # 1. 文本摘要与新闻制作的交汇点 在信息技术高速发展的今天,自动化新闻生成已成为可能,尤其在文本摘要领域,它将新闻制作的效率和精准度推向了新的高度。文本摘要作为信息提取和内容压缩的重要手段,对于新闻制作来说,其价值不言而喻。它不仅能快速提炼新闻要点,而且能够辅助新闻编辑进行内容筛选,减轻人力负担。通过深入分析文本摘要与新闻制作的交汇点,本章将从文本摘要的基础概念出发,进一步探讨它在新闻制作中的具体应用和优化策
recommend-type

日本南开海槽砂质沉积物粒径级配曲线

日本南开海槽是位于日本海的一个地质构造,其砂质沉积物的粒径级配曲线是用来描述该区域砂质沉积物中不同粒径颗粒的相对含量。粒径级配曲线通常是通过粒度分析得到的,它能反映出沉积物的粒度分布特征。 在绘制粒径级配曲线时,横坐标一般表示颗粒的粒径大小,纵坐标表示小于或等于某一粒径的颗粒的累计百分比。通过这样的曲线,可以直观地看出沉积物的粒度分布情况。粒径级配曲线可以帮助地质学家和海洋学家了解沉积环境的变化,比如水动力条件、沉积物来源和搬运过程等。 通常,粒径级配曲线会呈现出不同的形状,如均匀分布、正偏态、负偏态等。这些不同的曲线形状反映了沉积物的不同沉积环境和动力学特征。在南开海槽等深海环境中,沉积
recommend-type

Kubernetes资源管控与Gardener开源软件实践解析

"Kubernetes资源管控心得与Gardener开源软件资料下载.pdf" 在云计算领域,Kubernetes已经成为管理容器化应用程序的事实标准。然而,随着集群规模的扩大,资源管控变得日益复杂,这正是卢震宇,一位拥有丰富经验的SAP云平台软件开发经理,分享的主题。他强调了在Kubernetes环境中进行资源管控的心得体会,并介绍了Gardener这一开源项目,旨在解决云原生应用管理中的挑战。 在管理云原生应用时,企业面临诸多问题。首先,保持Kubernetes集群的更新和安全补丁安装是基础但至关重要的任务,这关系到系统的稳定性和安全性。其次,节点操作系统维护同样不可忽视,确保所有组件都能正常运行。再者,多云策略对于贴近客户、提供灵活部署选项至关重要。此外,根据负载自动扩展能力是现代云基础设施的必备功能,能够确保资源的有效利用。最后,遵循安全最佳实践,防止潜在的安全威胁,是保障业务连续性的关键。 为了解决这些挑战,Gardener项目应运而生。Gardener是一个基于Kubernetes构建的服务,它遵循“用Kubernetes管理一切”的原则,扩展了Kubernetes API服务器的功能,使得管理数千个企业级Kubernetes集群变得可能。通过Gardener,可以实现自动化升级、安全管理和跨云操作,大大减轻了Day2操作的复杂性。 Gardener的核心特性包括: 1. 自动化运维:Gardener能够自动化处理集群的生命周期管理,如创建、扩展、更新和删除。 2. 集群一致性:确保所有集群都遵循统一的标准和最佳实践,无论它们位于哪个云提供商之上。 3. 弹性伸缩:根据工作负载自动调整集群规模,以优化资源利用率。 4. 跨云支持:支持多云策略,帮助企业灵活地在不同云环境之间迁移。 5. 安全性:内置安全机制,确保集群及其应用程序的安全运行。 通过学习卢震宇分享的资料和深入理解Gardener项目,IT专业人员能够更好地应对Kubernetes资源管控的挑战,提升云原生应用的运营效率和可靠性。Gardener不仅是一个工具,更是一种方法论,它推动了Kubernetes在大规模企业环境中的落地和普及。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

递归神经网络(RNN):揭秘语言模型背后的革命力量

![递归神经网络(RNN):揭秘语言模型背后的革命力量](https://img-blog.csdnimg.cn/774026d297d54b56b7f4271afd6de26b.png) # 1. 递归神经网络基础与原理 ## 1.1 递归神经网络简介 递归神经网络(RNN)是深度学习领域中的一种核心神经网络架构,它能够处理序列数据。与传统的前馈神经网络不同,RNN具有记忆功能,通过循环连接在时间上存储信息,这使得它特别适合处理时间序列数据,如语言、音频、视频等。 ## 1.2 RNN的工作机制 RNN的工作原理是通过时间步序列展开,每一个时间步都使用相同的参数进行前向传播,这使得网
recommend-type

matlab批量处理数据画图

在Matlab中进行批量处理数据并画图是一个常见的任务,可以通过编写脚本或函数来实现自动化处理。以下是基本的步骤和代码示例: 1. 准备数据:首先你需要有一系列的数据文件,比如`.csv`或`.xlsx`格式,或者数据可以直接在Matlab中生成。 2. 读取数据:使用`readtable`、`csvread`、`xlsread`等函数读取文件中的数据。 3. 批量处理:编写循环结构来处理每个数据文件或数据集。你可以对每个数据集应用相同的处理逻辑,比如归一化、滤波、统计分析等。 4. 画图:使用`plot`、`scatter`、`bar`等函数根据处理后的数据绘制图形。