添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

prometheus组件介绍

1.Prometheus Server : 用于收集和存储时间序列数据。

2.Client Library : 客户端库,检测应用程序代码,当Prometheus抓取实例的HTTP端点时,客户端库会将所有跟踪的metrics指标的当前状态发送到prometheus server端。

3.Exporters : prometheus支持多种exporter,通过exporter可以采集metrics数据,然后发送到prometheus server端

4.Alertmanager : 从 Prometheus server 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack等。

5.Grafana :监控仪表盘

6.pushgateway : 各个目标主机可上报数据到pushgatewy,然后prometheus server统一从pushgateway拉取数据。

prometheus架构图

从上图可发现,Prometheus整个生态圈组成主要包括prometheus server,Exporter,pushgateway,alertmanager,grafana,Web ui界面,Prometheus server由三个部分组成,Retrieval,Storage,PromQL 。

  • retrieval负责在活跃的target主机上抓取监控指标数据
  • storage主要是把采集到的数据存储到磁盘中
  • promQL是prometheus提供的查询语言模块
  • prometheus工作流程

  • Prometheus server可定期从活跃的(up)目标主机上(target)拉取监控指标数据,目标主机的监控数据可通过配置静态job或者服务发现的方式被prometheus server采集到,这种方式默认的pull方式拉取指标;也可通过pushgateway把采集的数据上报到prometheus server中;还可通过一些组件自带的exporter采集相应组件的数据;
  • Prometheus server把采集到的监控指标数据保存到本地磁盘或者数据库;
  • Prometheus采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到alertmanager
  • Alertmanager通过配置报警接收方,发送报警到邮件,微信或者钉钉等
  • Prometheus 自带的web ui界面提供PromQL查询语言,可查询监控数据
  • Grafana可接入prometheus数据源,把监控数据以图形化形式展示出
  • 安装node-exporter组件

    ​ node-exporter是采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。

    ​ 一个master节点,一个node节点。

    在master节点操作

    cat >node-export.yaml  <<EOF
    apiVersion: apps/v1
    kind: DaemonSet
    metadata:
      name: node-exporter
      namespace: monitor-sa
      labels:
        name: node-exporter
    spec:
      selector:
        matchLabels:
         name: node-exporter
      template:
        metadata:
          labels:
            name: node-exporter
        spec:
          hostPID: true
          hostIPC: true
          hostNetwork: true
          containers:
          - name: node-exporter
            image: prom/node-exporter:v0.16.0
            ports:
            - containerPort: 9100
            resources:
              requests:
                cpu: 0.15
            securityContext:
              privileged: true
            args:
            - --path.procfs
            - /host/proc
            - --path.sysfs
            - /host/sys
            - --collector.filesystem.ignored-mount-points
            - '"^/(sys|proc|dev|host|etc)($|/)"'
            volumeMounts:
            - name: dev
              mountPath: /host/dev
            - name: proc
              mountPath: /host/proc
            - name: sys
              mountPath: /host/sys
            - name: rootfs
              mountPath: /rootfs
          tolerations:
          - key: "node-role.kubernetes.io/master"
            operator: "Exists"
            effect: "NoSchedule"
          volumes:
            - name: proc
              hostPath:
                path: /proc
            - name: dev
              hostPath:
                path: /dev
            - name: sys
              hostPath:
                path: /sys
            - name: rootfs
              hostPath:
                path: /
    

    通过node-exporter采集数据

    curl http://主机ip:9100/metrics
    

    在k8s集群中部署promethues

    创建namespace、sa账号,在k8s集群的master节点操作

    kubectl create ns monitor-sa
    kubectl create serviceaccount monitor -n monitor-sa
    #把sa账号monitor通过clusterrolebing绑定到clusterrole上
    kubectl create clusterrolebinding moniror-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
    

    创建数据目录

    # 在k8s集群的任何一个node节点操作,本实验在node1上操作
    mkdir /data
    chmod 777 /data/
    

    安装prometheus,在master节点操作

    #创建一个configmap存储卷,用来存放prometheus配置信息
    #prometheus-cfg.yaml
    kind: ConfigMap
    apiVersion: v1
    metadata:
      labels:
        app: prometheus
      name: prometheus-config
      namespace: monitor-sa
    data:
      prometheus.yml: |
        global:
          scrape_interval: 15s
          scrape_timeout: 10s
          evaluation_interval: 1m
        scrape_configs:
        - job_name: 'kubernetes-node'
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: ':9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: 'kubernetes-node-cadvisor'
          kubernetes_sd_configs:
          - role:  node
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
          - target_label: __address__
            replacement: kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)
            target_label: __metrics_path__
            replacement: /api/v1/nodes//proxy/metrics/cadvisor
        - job_name: 'kubernetes-apiserver'
          kubernetes_sd_configs:
          - role: endpoints
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
            action: keep
            regex: default;kubernetes;https
        - job_name: 'kubernetes-service-endpoints'
          kubernetes_sd_configs:
          - role: endpoints
          relabel_configs:
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
            action: keep
            regex: true
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
            action: replace
            target_label: __scheme__
            regex: (https?)
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
            action: replace
            target_label: __metrics_path__
            regex: (.+)
          - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
            action: replace
            target_label: __address__
            regex: ([^:]+)(?::\d+)?;(\d+)
            replacement: :
          - action: labelmap
            regex: __meta_kubernetes_service_label_(.+)
          - source_labels: [__meta_kubernetes_namespace]
            action: replace
            target_label: kubernetes_namespace
          - source_labels: [__meta_kubernetes_service_name]
            action: replace
            target_label: kubernetes_name 
    #通过deployment部署prometheus
    #prometheus-deploy.yaml
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: prometheus-server
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: prometheus
          component: server
      template:
        metadata:
          labels:
            app: prometheus
            component: server
          annotations:
            prometheus.io/scrape: 'false'
        spec:
          nodeName: node1
          serviceAccountName: monitor
          containers:
          - name: prometheus
            image: prom/prometheus:v2.2.1
            imagePullPolicy: IfNotPresent
            command:
              - prometheus
              - --config.file=/etc/prometheus/prometheus.yml
              - --storage.tsdb.path=/prometheus
              - --storage.tsdb.retention=720h
            ports:
            - containerPort: 9090
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/prometheus/prometheus.yml
              name: prometheus-config
              subPath: prometheus.yml
            - mountPath: /prometheus/
              name: prometheus-storage-volume
          volumes:
            - name: prometheus-config
              configMap:
                name: prometheus-config
                items:
                  - key: prometheus.yml
                    path: prometheus.yml
                    mode: 0644
            - name: prometheus-storage-volume
              hostPath:
               path: /data
               type: Directory
    

    注意:通过上面命令生成的promtheus-cfg.yaml文件会有一些问题,$1和$2这种变量在文件里没有,需要在k8s的master1节点打开promtheus-cfg.yaml文件,手动把$1和$2这种变量写进文件里,promtheus-cfg.yaml文件需要手动修改部分如下:

    22行的replacement: ':9100'变成replacement: '${1}:9100'
    42行的replacement: /api/v1/nodes//proxy/metrics/cadvisor变成
                  replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    73行的replacement:  变成replacement: $1:$2
    

    给prometheus pod 创建一个service

    cat  > prometheus-svc.yaml << EOF
    apiVersion: v1
    kind: Service
    metadata:
      name: prometheus
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      type: NodePort
      ports:
        - port: 9090
          targetPort: 9090
          protocol: TCP
      selector:
        app: prometheus
        component: server
    
    #查看service在物理机映射的端口
    kubectl	get svc -n monitor-sa
    #访问prometheus web ui 界面
    http://172.16.9.3:30426/graph
    #点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据
    

    prometheus热更新

    #为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,如修改prometheus-cfg.yaml,想要使配置生效可用如下热加载命令:
    curl -X POST http://10.244.1.125:9090/-/reload

    #10.244.1.66是prometheus的pod的ip地址

    #热加载速度比较慢,可以暴力重启prometheus,如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除:

    kubectl delete -f prometheus-cfg.yaml

    kubectl delete -f prometheus-deploy.yaml

    然后再通过apply更新:

    kubectl apply -f prometheus-cfg.yaml

    kubectl apply -f prometheus-deploy.yaml

    线上最好热加载,暴力删除可能造成监控数据的丢失

    Grafana安装和配置

    下载安装Grafana需要的镜像

    上传heapster-grafana-amd64_v5_0_4.tar.gz镜像到k8s的各个master节点和k8s的各个node节点,然后在各个节点手动解压:
    docker load -i heapster-grafana-amd64_v5_0_4.tar.gz

    镜像所在的百度网盘地址如下:

    链接:https://pan.baidu.com/s/1TmVGKxde_cEYrbjiETboEA 提取码:052u
    

    在k8s的master节点创建grafana.yaml

    cat  >grafana.yaml <<  EOF
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: monitoring-grafana
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          task: monitoring
          k8s-app: grafana
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: grafana
        spec:
          containers:
          - name: grafana
            image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4
            ports:
            - containerPort: 3000
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/ssl/certs
              name: ca-certificates
              readOnly: true
            - mountPath: /var
              name: grafana-storage
            - name: INFLUXDB_HOST
              value: monitoring-influxdb
            - name: GF_SERVER_HTTP_PORT
              value: "3000"
              # The following env variables are required to make Grafana accessible via
              # the kubernetes api-server proxy. On production clusters, we recommend
              # removing these env variables, setup auth for grafana, and expose the grafana
              # service using a LoadBalancer or a public IP.
            - name: GF_AUTH_BASIC_ENABLED
              value: "false"
            - name: GF_AUTH_ANONYMOUS_ENABLED
              value: "true"
            - name: GF_AUTH_ANONYMOUS_ORG_ROLE
              value: Admin
            - name: GF_SERVER_ROOT_URL
              # If you're only using the API Server proxy, set this value instead:
              # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
              value: /
          volumes:
          - name: ca-certificates
            hostPath:
              path: /etc/ssl/certs
          - name: grafana-storage
            emptyDir: {}
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
        # If you are NOT using this as an addon, you should comment out this line.
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-grafana
      name: monitoring-grafana
      namespace: kube-system
    spec:
      # In a production setup, we recommend accessing Grafana through an external Loadbalancer
      # or through a public IP.
      # type: LoadBalancer
      # You could also use NodePort to expose the service at a randomly-generated port
      # type: NodePort
      ports:
      - port: 80
        targetPort: 3000
      selector:
        k8s-app: grafana
      type: NodePort
    

    通过kubectl get sac -n cube-system看到grafana暴漏的苏主机端口是32351,我们可以访问k8s集群的master节点ip:32351即可访问grafana的web界面

    Grafana界面接入prometheus数据源

    登录Grafana,172.16.9.3:32351,账号密码都是admin

    配置grafana界面,选择create your first data source

    Name:Prometheus
    Type:Prometheus
    HTTP出的URL:http://prometheus.monitor-sa.svc:9090
    

    点击左下角Save&Test,出现Data source is working,说明prometheus数据源成功的被grafana接入了。

    导入监控模板,可在如下链接搜索
    https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes
    也可直接导入node_exporter.json监控模板,这个可以把node节点指标显示出来,node_exporter.json在百度网盘地址如下:

    链接:https://pan.baidu.com/s/1vF1kAMRbxQkUGPlZt91MWg 提取码:kyd6
    

    还可直接导入docker_rev1.json,可以把容器相关的数据展示出来
    docker_rev1.json在百度网盘地址如下

    链接:https://pan.baidu.com/s/17o_nja5N2R-g9g5PkJ3aFA 提取码:vinv
    

    导入监控模版步骤:点击左侧+号下面的Import,选择Upload json file,选择一个本地的json文件即可。

    安装配置kube-state-metrics组件

    ​ kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。

    安装kube-state-metrics组件

    创建sa,并对sa授权,在master节点操作

    cat > kube-state-metrics-rbac.yaml <<EOF
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: kube-state-metrics
      namespace: kube-system
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: kube-state-metrics
    rules:
    - apiGroups: [""]
      resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
      verbs: ["list", "watch"]
    - apiGroups: ["extensions"]
      resources: ["daemonsets", "deployments", "replicasets"]
      verbs: ["list", "watch"]
    - apiGroups: ["apps"]
      resources: ["statefulsets"]
      verbs: ["list", "watch"]
    - apiGroups: ["batch"]
      resources: ["cronjobs", "jobs"]
      verbs: ["list", "watch"]
    - apiGroups: ["autoscaling"]
      resources: ["horizontalpodautoscalers"]
      verbs: ["list", "watch"]
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
      name: kube-state-metrics
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: kube-state-metrics
    subjects:
    - kind: ServiceAccount
      name: kube-state-metrics
      namespace: kube-system
    

    安装cube-state-metrics组件,在master节点操作

    cat > kube-state-metrics-deploy.yaml <<EOF
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: kube-state-metrics
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: kube-state-metrics
      template:
        metadata:
          labels:
            app: kube-state-metrics
        spec:
          serviceAccountName: kube-state-metrics
          containers:
          - name: kube-state-metrics
    #        image: gcr.io/google_containers/kube-state-metrics-amd64:v1.3.1
            image: quay.io/coreos/kube-state-metrics:v1.9.0
            ports:
            - containerPort: 8080
    

    创建service,在master节点操作

    cat >kube-state-metrics-svc.yaml <<EOF
    apiVersion: v1
    kind: Service
    metadata:
      annotations:
        prometheus.io/scrape: 'true'
      name: kube-state-metrics
      namespace: kube-system
      labels:
        app: kube-state-metrics
    spec:
      ports:
      - name: kube-state-metrics
        port: 8080
        protocol: TCP
      selector:
        app: kube-state-metrics
    

    在Grafana web界面导入kubernetes Cluster和kubernetes cluster monitoring

    链接:https://pan.baidu.com/s/1QAMqT8scsXx-lzEPI6MPgA 
    提取码:i4yd
    

    安装和配置Alertmanager-发送报警到qq邮箱

    在k8s的master节点创建alertmanager-cm.yaml文件

    cat >alertmanager-cm.yaml <<EOF
    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: alertmanager
      namespace: monitor-sa
    data:
      alertmanager.yml: |-
        global:
          resolve_timeout: 1m
          smtp_smarthost: 'smtp.163.com:25'
          smtp_from: '15011572657@163.com'
          smtp_auth_username: '15011572657'
          smtp_auth_password: 'BDBPRMLNZGKWRFJP'
          smtp_require_tls: false
        route:
          group_by: [alertname]
          group_wait: 10s
          group_interval: 10s
          repeat_interval: 10m
          receiver: default-receiver
        receivers:
        - name: 'default-receiver'
          email_configs:
          - to: 'y1486170457@qq.com'
            send_resolved: true
    

    Alertmanager配置文件解释说明:

    smtp_smarthost: 'smtp.163.com:25'
    #用于发送邮件的邮箱的SMTP服务器地址+端口
    smtp_from: '15011572657@163.com'
    #这是指定从哪个邮箱发送报警
    smtp_auth_username: '15011572657'
    #这是发送邮箱的认证用户,不是邮箱名
    smtp_auth_password: 'BDBPRMLNZGKWRFJP'
    #这是发送邮箱的授权码而不是登录密码
    email_configs:
       - to: 'y1486170457@qq.com'
    #to后面指定发送到哪个邮箱,我发送到我的qq邮箱,大家需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复
    

    在master节点重新生成prometheus-cfg.yaml文件

    kind: ConfigMap
    apiVersion: v1
    metadata:
      labels:
        app: prometheus
      name: prometheus-config
      namespace: monitor-sa
    data:
      prometheus.yml: |
        rule_files:
        - /etc/prometheus/rules.yml
        alerting:
          alertmanagers:
          - static_configs:
            - targets: ["localhost:9093"]
        global:
          scrape_interval: 15s
          scrape_timeout: 10s
          evaluation_interval: 1m
        scrape_configs:
        - job_name: 'kubernetes-node'
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: 'kubernetes-node-cadvisor'
          kubernetes_sd_configs:
          - role:  node
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
          - target_label: __address__
            replacement: kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)
            target_label: __metrics_path__
            replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
        - job_name: 'kubernetes-apiserver'
          kubernetes_sd_configs:
          - role: endpoints
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
            action: keep
            regex: default;kubernetes;https
        - job_name: 'kubernetes-service-endpoints'
          kubernetes_sd_configs:
          - role: endpoints
          relabel_configs:
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
            action: keep
            regex: true
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
            action: replace
            target_label: __scheme__
            regex: (https?)
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
            action: replace
            target_label: __metrics_path__
            regex: (.+)
          - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
            action: replace
            target_label: __address__
            regex: ([^:]+)(?::\d+)?;(\d+)
            replacement: $1:$2
          - action: labelmap
            regex: __meta_kubernetes_service_label_(.+)
          - source_labels: [__meta_kubernetes_namespace]
            action: replace
            target_label: kubernetes_namespace
          - source_labels: [__meta_kubernetes_service_name]
            action: replace
            target_label: kubernetes_name 
        - job_name: kubernetes-pods
          kubernetes_sd_configs:
          - role: pod
          relabel_configs:
          - action: keep
            regex: true
            source_labels:
            - __meta_kubernetes_pod_annotation_prometheus_io_scrape
          - action: replace
            regex: (.+)
            source_labels:
            - __meta_kubernetes_pod_annotation_prometheus_io_path
            target_label: __metrics_path__
          - action: replace
            regex: ([^:]+)(?::\d+)?;(\d+)
            replacement: $1:$2
            source_labels:
            - __address__
            - __meta_kubernetes_pod_annotation_prometheus_io_port
            target_label: __address__
          - action: labelmap
            regex: __meta_kubernetes_pod_label_(.+)
          - action: replace
            source_labels:
            - __meta_kubernetes_namespace
            target_label: kubernetes_namespace
          - action: replace
            source_labels:
            - __meta_kubernetes_pod_name
            target_label: kubernetes_pod_name
        - job_name: 'kubernetes-schedule'
          scrape_interval: 5s
          static_configs:
          - targets: ['172.16.9.3:10251']
        - job_name: 'kubernetes-controller-manager'
          scrape_interval: 5s
          static_configs:
          - targets: ['172.16.9.3:10252']
        - job_name: 'kubernetes-kube-proxy'
          scrape_interval: 5s
          static_configs:
          - targets: ['172.16.9.3:10249','172.16.9.4:10249']
        - job_name: 'kubernetes-etcd'
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
            cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
            key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
          scrape_interval: 5s
          static_configs:
          - targets: ['172.16.9.3:2379']
      rules.yml: |
        groups:
        - name: example
          rules:
          - alert: kube-proxy的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  kube-proxy的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$lables.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: scheduler的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  scheduler的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: controller-manager的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  controller-manager的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: apiserver的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  apiserver的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: etcd的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  etcd的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: kube-state-metrics的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
              value: "{{ $value }}%"
              threshold: "80%"      
          - alert: kube-state-metrics的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
              value: "{{ $value }}%"
              threshold: "90%"      
          - alert: coredns的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
              value: "{{ $value }}%"
              threshold: "80%"      
          - alert: coredns的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
              value: "{{ $value }}%"
              threshold: "90%"      
          - alert: kube-proxy打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kube-proxy打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-schedule打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-schedule打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-etcd打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-etcd打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: coredns
            expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
            for: 2s
            labels:
              severity: warnning 
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
              value: "{{ $value }}"
          - alert: coredns
            expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
              value: "{{ $value }}"
          - alert: kube-proxy
            expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: scheduler
            expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager
            expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver
            expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-etcd
            expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kube-dns
            expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: HttpRequestsAvg
            expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
              value: "{{ $value }}"
              threshold: "1000"   
          - alert: Pod_restarts
            expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Pod_waiting
            expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
              value: "{{ $value }}"
              threshold: "1"   
          - alert: Pod_terminated
            expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
              value: "{{ $value }}"
              threshold: "1"
          - alert: Etcd_leader
            expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_leader_changes
            expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_failed
            expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_db_total_size
            expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
              value: "{{ $value }}"
              threshold: "10G"
          - alert: Endpoint_ready
            expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
              value: "{{ $value }}"
              threshold: "1"
        - name: 物理节点状态-监控告警
          rules:
          - alert: 物理节点cpu使用率
            expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
            for: 2s
            labels:
              severity: ccritical
            annotations:
              summary: "{{ $labels.instance }}cpu使用率过高"
              description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" 
          - alert: 物理节点内存使用率
            expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{ $labels.instance }}内存使用率过高"
              description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
          - alert: InstanceDown
            expr: up == 0
            for: 2s
            labels:
              severity: critical
            annotations:   
              summary: "{{ $labels.instance }}: 服务器宕机"
              description: "{{ $labels.instance }}: 服务器延时超过2分钟"
          - alert: 物理节点磁盘的IO性能
            expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
              description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
          - alert: 入网流量带宽
            expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
              description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
          - alert: 出网流量带宽
            expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
              description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
          - alert: TCP会话
            expr: node_netstat_Tcp_CurrEstab > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
              description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
          - alert: 磁盘容量
            expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
              description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
    

    同样需要手动添加$的变量。

    在k8smaster节点重新生成一个prometheus-deploy.yaml文件

    cat >prometheus-deploy.yaml <<EOF
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: prometheus-server
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: prometheus
          component: server
        #matchExpressions:
        #- {key: app, operator: In, values: [prometheus]}
        #- {key: component, operator: In, values: [server]}
      template:
        metadata:
          labels:
            app: prometheus
            component: server
          annotations:
            prometheus.io/scrape: 'false'
        spec:
          nodeName: node1
          serviceAccountName: monitor
          containers:
          - name: prometheus
            image: prom/prometheus:v2.2.1
            imagePullPolicy: IfNotPresent
            command:
            - "/bin/prometheus"
            args:
            - "--config.file=/etc/prometheus/prometheus.yml"
            - "--storage.tsdb.path=/prometheus"
            - "--storage.tsdb.retention=24h"
            - "--web.enable-lifecycle"
            ports:
            - containerPort: 9090
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/prometheus
              name: prometheus-config
            - mountPath: /prometheus/
              name: prometheus-storage-volume
            - name: k8s-certs
              mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
          - name: alertmanager
            image: prom/alertmanager:v0.14.0
            imagePullPolicy: IfNotPresent
            args:
            - "--config.file=/etc/alertmanager/alertmanager.yml"
            - "--log.level=debug"
            ports:
            - containerPort: 9093
              protocol: TCP
              name: alertmanager
            volumeMounts:
            - name: alertmanager-config
              mountPath: /etc/alertmanager
            - name: alertmanager-storage
              mountPath: /alertmanager
            - name: localtime
              mountPath: /etc/localtime
          volumes:
            - name: prometheus-config
              configMap:
                name: prometheus-config
            - name: prometheus-storage-volume
              hostPath:
               path: /data
               type: Directory
            - name: k8s-certs
              secret:
               secretName: etcd-certs
            - name: alertmanager-config
              configMap:
                name: alertmanager
            - name: alertmanager-storage
              hostPath:
               path: /data/alertmanager
               type: DirectoryOrCreate
            - name: localtime
              hostPath:
               path: /usr/share/zoneinfo/Asia/Shanghai
    

    生成一个etch-certs,这个在部署prometheus需要

    kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
    

    更新yaml文件,查看部署是否成功。

    在k8smaster节点上重新生成一个alertmanager-svc.yaml文件

    cat >alertmanager-svc.yaml <<EOF
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        name: prometheus
        kubernetes.io/cluster-service: 'true'
      name: alertmanager
      namespace: monitor-sa
    spec:
      ports:
      - name: alertmanager
        nodePort: 30066
        port: 9093
        protocol: TCP
        targetPort: 9093
      selector:
        app: prometheus
      sessionAffinity: None
      type: NodePort
    

    #查看service在物理机映射的端口

    kubectl get svc -n monitor-sa

    访问prometheus界面,点击alerts,把controller-manager的cpu使用率大于90%展开,可看到status为FIRING,表示prometheus已经将告警发给alertmanager,在Alertmanager 中可以看到有一个 alert。

    登录alertmanager web界面查看

    配置alertmanager报警-发送报警到钉钉

    创建钉钉机器人

    打开电脑版钉钉,创建一个群,创建自定义机器人,按如下步骤创建
    https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq
    我创建的机器人如下:
    群设置-->智能群助手-->添加机器人-->自定义-->添加
    机器人名称:kube-event
    接收群组:钉钉报警测试
    安全设置:
    自定义关键词:cluster1
    上面配置好之后点击完成即可,这样就会创建一个kube-event的报警机器人,创建机器人成功之后怎么查看webhook,按如下:
    点击智能群助手,可以看到刚才创建的kube-event这个机器人,点击kube-event,就会进入到kube-event机器人的设置界面
    出现如下内容:
    机器人名称:kube-event
    接受群组:钉钉报警测试
    消息推送:开启
    webhook:https://oapi.dingtalk.com/robot/send?access_token=9c03ff1f47b1d15a10d852398cafb84f8e81ceeb1ba557eddd8a79e5a5e5548e
    安全设置:
    自定义关键词:cluster1
    

    安装钉钉的webhook插件,在master节点操作

    tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz
    #压缩包地址
    #链接:https://pan.baidu.com/s/1_HtVZsItq2KsYvOlkIP9DQ 
    #提取码:d59o
    cd prometheus-webhook-dingtalk-0.3.0.linux-amd64
    #启动钉钉报警插件
    nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=4372b6419ff1f198a9732dfb9f469f8c7eb7310dec00ede726a7ecd9d235c9b9" &
    #对原来的文件做备份
    cp alertmanager-cm.yaml alertmanager-cm.yaml.bak
    #重新生成一个新的alertmanager-cm.yaml文件
    cat >alertmanager-cm.yaml <<EOF
    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: alertmanager
      namespace: monitor-sa
    data:
      alertmanager.yml: |-
        global:
          resolve_timeout: 1m
          smtp_smarthost: 'smtp.163.com:25'
          smtp_from: '15011572657@163.com'
          smtp_auth_username: '15011572657'
          smtp_auth_password: 'BDBPRMLNZGKWRFJP'
          smtp_require_tls: false
        route:
          group_by: [alertname]
          group_wait: 10s
          group_interval: 10s
          repeat_interval: 10m
          receiver: cluster1
        receivers:
        - name: cluster1
          webhook_configs:
          - url: 'http://192.168.124.16:8060/dingtalk/cluster1/send'
            send_resolved: true
    #通过kubectl apply使配置生效
    kubectl delete -f alertmanager-cm.yaml
    kubectl  apply  -f alertmanager-cm.yaml
    kubectl delete -f prometheus-cfg.yaml
    kubectl apply  -f prometheus-cfg.yaml
    kubectl delete  -f prometheus-deploy.yaml
    kubectl apply  -f  prometheus-deploy.yaml
    #通过上面步骤,就可以实现钉钉报警了
    

    参考链接:https://mp.weixin.qq.com/s/I1-xfxuny_S8DHchkXHSpQ