浅谈matplotlib 绘制梯度下降求解过程
作者:Michael阿明
这篇文章主要介绍了浅谈matplotlib 绘制梯度下降求解过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
机器学习过程中经常需要可视化,有助于加强对模型和参数的理解。
下面对梯度下降过程进行动图演示,可以修改不同的学习率,观看效果。
import numpy as np
import matplotlib.pyplot as plt
from IPython import display
X = 2*np.random.rand(100,1)
y = 4+3*X+np.random.randn(100,1) # randn正态分布
X_b = np.c_[np.ones((100,1)),X] # c_行数相等,左右拼接
eta = 0.1 # 学习率
n_iter = 1000 # 迭代次数
m = 100 # 样本点个数
theta = np.random.randn(2,1) # 参数初始值
plt.figure(figsize=(8,6))
mngr = plt.get_current_fig_manager() # 获取当前figure manager
mngr.window.wm_geometry("+520+520") # 调整窗口在屏幕上弹出的位置,注意写在打开交互模式之前
# 上面固定窗口,方便screentogif定位录制,只会这种弱弱的方法
plt.ion()# 打开交互模式
plt.rcParams["font.sans-serif"] = "SimHei"# 消除中文乱码
for iter in range(n_iter):
plt.cla() # 清除原图像
gradients = 2/m*X_b.T.dot(X_b.dot(theta)-y)
theta = theta - eta*gradients
X_new = np.array([[0],[2]])
X_new_b = np.c_[np.ones((2,1)),X_new]
y_pred = X_new_b.dot(theta)
plt.axis([0,2,0,15])
plt.plot(X,y,"b.")
plt.plot(X_new,y_pred,"r-")
plt.title("学习率:{:.2f}".format(eta))
plt.pause(0.3) # 暂停一会
display.clear_output(wait=True)# 刷新图像
plt.ioff()# 关闭交互模式
plt.show()
学习率:0.1,较合适
学习率:0.02,收敛变慢了
学习率:0.45,在最佳参数附近震荡
学习率:0.5,不收敛
到此这篇关于浅谈matplotlib 绘制梯度下降求解过程的文章就介绍到这了,更多相关matplotlib 梯度下降内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
您可能感兴趣的文章:
Python调用Matplotlib绘制振动图、箱型图和提琴图
2021-12-12
Python+matplotlib实现绘制等高线图示例详解
2021-12-12
PyQt5+pycharm开发环境搭建的实现步骤(图文)
2021-11-11
Python matplotlib如何绘制各种流线图
2021-12-12
Python Pyqt5多线程更新UI代码实例(防止界面卡死)
2021-12-12
详解Python函数中的几种参数
2021-12-12
Python解压可迭代对象赋值给多个变量详解
2021-12-12
Python爬虫采集微博视频数据
2021-12-12
美国设下计谋,用娘炮文化重塑日本,已影响至中国
2021-11-19
时空伴随者是什么意思?时空伴随者介绍
2021-11-09
工信部称网盘企业免费用户最低速率应满足基本下载需求,天翼云盘回应:坚决支持,始终
2021-11-05
2022年放假安排出炉:五一连休5天 2022年所有节日一览表
2021-10-26
电脑版
-
返回首页
2006-2023 脚本之家 JB51.Net , All Rights Reserved.
苏ICP备14036222号