添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

给我一个spring batch双数据源的例子,H2与DB2,并且在application.yml中 指定默认数据源为h2

时间: 2024-03-12 21:48:35 浏览: 88
好的,以下是一个基于 Spring Boot 2.x 和 Spring [bat](https://geek.csdn.net/educolumn/1c7183200a2468af5aab96a31844721a?spm=1055.2569.3001.10083)ch 的双数据源例子,其中使用 H2 和 DB2 作为数据源: 首先在 pom.xml 文件中添加 H2 和 DB2 的 JDBC 驱动依赖: ```xml <dependencies> <!-- Spring Boot Starter [bat](https://geek.csdn.net/educolumn/1c7183200a2468af5aab96a31844721a?spm=1055.2569.3001.10083)ch --> <dependency> <groupId>[org](https://geek.csdn.net/educolumn/23d0bba68b71e0503af30ae29797603f?spm=1055.2569.3001.10083).springframework.boot</groupId> <artifactId>spring-boot-starter-[bat](https://geek.csdn.net/educolumn/1c7183200a2468af5aab96a31844721a?spm=1055.2569.3001.10083)ch</artifactId> </dependency> <!-- H2 Database --> <dependency> <groupId>com.h2database</groupId> <artifactId>h2</artifactId> </dependency> <!-- DB2 Database --> <dependency> <groupId>com.[ibm](https://geek.csdn.net/educolumn/02570bac821efd7f79921a134842f8c4?spm=1055.2569.3001.10083).db2</groupId> <artifactId>jcc</artifactId> <version>11.5.0.0</version> </dependency> </dependencies> ```

相关推荐

最新推荐

recommend-type

Java中批处理框架spring batch详细介绍

Spring Batch是Spring提供的一个数据处理框架,旨在开发对企业系统日常运营至关重要的强大批处理应用程序。它提供了可重用的功能,这些功能对于处理大量的数据至关重要,包括记录/跟踪,事务管理,作业处理统计,...
recommend-type

详解Tensorflow数据读取有三种方式(next_batch)

在TensorFlow中,数据读取是构建深度学习模型的关键步骤,因为神经网络需要大量数据进行训练。本篇文章主要探讨了TensorFlow数据读取的三种方式:预加载数据、通过Python喂数据以及直接从文件中读取。每种方法都有其...
recommend-type

Spring Batch读取txt文件并写入数据库的方法教程

Spring Batch 是一个强大的批处理框架,它为处理大量数据提供了灵活和可扩展的解决方案。在本教程中,我们将探讨如何使用 Spring Batch 读取文本(txt)文件,并将读取到的数据处理后写入数据库。 首先,我们需要...
recommend-type

sklearn和keras的数据切分与交叉验证的实例详解

在机器学习和深度学习中,数据切分与交叉验证是重要的步骤,用于评估模型的泛化能力。在本文中,我们将深入探讨如何在sklearn和Keras库中实现这一过程。 首先,我们要理解数据切分的基本概念。在训练模型时,通常会...
recommend-type

Pytorch 数据加载与数据预处理方式

在PyTorch中,数据加载和预处理是机器学习模型训练的关键步骤,它确保了高效且正确地处理大量数据。本文将深入探讨PyTorch中数据加载的机制以及如何进行数据预处理。 首先,PyTorch提供了一个名为`torchvision....
recommend-type

.NET Windows编程:深度探索多线程技术

“20071010am--.NET Windows编程系列课程(15):多线程编程.pdf” 这篇PDF文档是关于.NET框架下的Windows编程,特别是多线程编程的教程。课程由邵志东讲解,适用于对.NET有一定基础的开发者,级别为Level200,即适合中等水平的学习者。课程内容涵盖从Windows编程基础到高级主题,如C#编程、图形编程、网络编程等,其中第12部分专门讨论多线程编程。 多线程编程是现代软件开发中的重要概念,它允许在一个进程中同时执行多个任务,从而提高程序的效率和响应性。线程是程序执行的基本单位,每个线程都有自己的堆栈和CPU寄存器状态,可以在进程的地址空间内独立运行。并发执行的线程并不意味着它们会同时占用CPU,而是通过快速切换(时间片轮转)在CPU上交替执行,给人一种同时运行的错觉。 线程池是一种优化的线程管理机制,用于高效管理和复用线程,避免频繁创建和销毁线程带来的开销。异步编程则是另一种利用多线程提升效率的方式,它能让程序在等待某个耗时操作完成时,继续执行其他任务,避免阻塞主线程。 在实际应用中,应当根据任务的性质来决定是否使用线程。例如,当有多个任务可以并行且互不依赖时,使用多线程能提高程序的并发能力。然而,如果多个线程需要竞争共享资源,那么可能会引入竞态条件和死锁,这时需要谨慎设计同步策略,如使用锁、信号量或条件变量等机制来协调线程间的访问。 课程中还可能涉及到如何创建和管理线程,如何设置和调整线程的优先级,以及如何处理线程间的通信和同步问题。此外,可能会讨论线程安全的数据结构和方法,以及如何避免常见的多线程问题,如死锁和活锁。 .NET框架提供了丰富的API来支持多线程编程,如System.Threading命名空间下的Thread类和ThreadPool类。开发者可以利用这些工具创建新的线程,或者使用ThreadPool进行任务调度,以实现更高效的并发执行。 这份课程是学习.NET环境下的多线程编程的理想资料,它不仅会介绍多线程的基础概念,还会深入探讨如何在实践中有效利用多线程,提升软件性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库连接性能优化实战:从慢查询到极速响应,提升用户体验

![PHP数据库连接性能优化实战:从慢查询到极速响应,提升用户体验](https://ucc.alicdn.com/pic/developer-ecology/sidgjzoioz6ou_97b0465f5e534a94917c5521ceeae9b4.png?x-oss-process=image/resize,s_500,m_lfit) # 1. PHP数据库连接性能优化概述 在现代Web应用程序中,数据库连接性能对于应用程序的整体性能至关重要。优化PHP数据库连接可以提高应用程序的响应时间、吞吐量和稳定性。本文将深入探讨PHP数据库连接性能优化的理论基础和实践技巧,帮助您提升应用程序的
recommend-type

python xrange和range的区别

`xrange`和`range`都是Python中用于生成整数序列的函数,但在旧版的Python 2.x中,`xrange`更常用,而在新版的Python 3.x中,`range`成为了唯一的选择。 1. **内存效率**: - `xrange`: 这是一个迭代器,它不会一次性生成整个序列,而是按需计算下一个元素。这意味着当你遍历`xrange`时,它并不会占用大量内存。 - `range`: Python 3中的`range`也是生成器,但它会先创建整个列表,然后再返回。如果你需要处理非常大的数字范围,可能会消耗较多内存。 2. **语法**: - `xrange`:
recommend-type

遗传算法(GA)详解:自然进化启发的优化策略

遗传算法(Genetic Algorithms, GA)是一种启发式优化技术,其灵感来源于查尔斯·达尔文的自然选择进化理论。这种算法在解决复杂的优化问题时展现出强大的适应性和鲁棒性,特别是在数学编程、网络分析、分支与限界法等传统优化方法之外,提供了一种新颖且有效的解决方案。 GA的基本概念包括以下几个关键步骤: 1. **概念化算法**:遗传算法是基于生物进化的模拟,以个体(或解)的形式表示问题的可能答案。每个个体是一个可行的解决方案,由一组特征(也称为基因)组成,这些特征代表了解的属性。 2. **种群**:算法开始时,种群包含一定数量的随机生成的个体。这些个体通过fitness function(适应度函数)评估其解决方案的质量,即在解决问题上的优劣程度。 3. **繁殖**:根据每个个体的fitness值,算法选择父母进行繁殖。较高的适应度意味着更高的生存和繁殖机会,这确保了优秀的解在下一代中有更多的存在。 4. **竞争与选择**:在种群中,通过竞争和选择机制,最适应的个体被挑选出来,准备进入下一轮的遗传过程。 5. **生存与淘汰**:新生成的后代个体数量与上一代相同,而旧的一代将被淘汰。这个过程模仿了自然选择中的生存斗争,只有最适应环境的个体得以延续。 6. **遗传与变异**:新个体的基因组合来自两个或多个父母,这是一个遗传的过程。同时,随机变异也可能引入新的基因,增加了搜索空间的多样性,有助于跳出局部最优。 7. **迭代与收敛**:遗传算法通常通过多代迭代进行,每一代都可能导致种群结构的变化。如果设计得当,算法会逐渐收敛到全局最优解或者接近最优解。 8. **应用领域广泛**:GA可用于解决各种优化问题,如网络路由、机器学习中的参数优化、工程设计、生产调度等。它与其他优化技术(如网络分析、分支与-bound、模拟退火和禁忌搜索)相辅相成,提供了解决复杂问题的多样化手段。