从上图可以看出原始模型的输入维度是(10,3,32,32)输出537的维度是(10,1,8,8);538的维度是(10,2,8,8);539的维度是(10,2,8,8);540的维度是(10,2,8,8)
2.模型修改
由于我们的实际图片大小是1920*1080,所有要对网络的输入输出维度进行修改
import onnx
import math
input_size =(1080,1920)
model = onnx.load_model("centerface.onnx")
d = model.graph.input[0].type.tensor_type.shape.dim
print(d)
rate = (int(math.ceil(input_size[0]/d[2].dim_value)),int(math.ceil(input_size[1]/d[3].dim_value)))
print("rare",rate)
d[0].dim_value = 1
d[2].dim_value *= rate[0]
d[3].dim_value *= rate[1]
for output in model.graph.output:
d = output.type.tensor_type.shape.dim
print(d)
d[0].dim_value = 1
d[2].dim_value *= rate[0]
d[3].dim_value *= rate[1]
onnx.save_model(model,"centerface_1088_1920.onnx" )
再次查看 centerface_1088_1920.onn模型的输入输出维度如下图:
也可以使用代码方式查看网络结构,代码如下
import onnx
from onnx import helper
import sys,getopt
#加载模型
def loadOnnxModel(path):
model = onnx.load(path)
return model
#获取节点和节点的输入输出名列表,一般节点的输入将来自于上一层的输出放在列表前面,参数放在列表后面
def getNodeAndIOname(nodename,model):
for i in range(len(model.graph.node)):
if model.graph.node[i].name == nodename:
Node = model.graph.node[i]
input_name = model.graph.node[i].input
output_name = model.graph.node[i].output
return Node,input_name,output_name
#获取对应输入信息
def getInputTensorValueInfo(input_name,model):
in_tvi = []
for name in input_name:
for params_input in model.graph.input:
if params_input.name == name:
in_tvi.append(params_input)
for inner_output in model.graph.value_info:
if inner_output.name == name:
in_tvi.append(inner_output)
return in_tvi
#获取对应输出信息
def getOutputTensorValueInfo(output_name,model):
out_tvi = []
for name in output_name:
out_tvi = [inner_output for inner_output in model.graph.value_info if inner_output.name == name]
if name == model.graph.output[0].name:
out_tvi.append(model.graph.output[0])
return out_tvi
#获取对应超参数值
def getInitTensorValue(input_name,model):
init_t = []
for name in input_name:
init_t = [init for init in model.graph.initializer if init.name == name]
return init_t
#构建单个节点onnx模型
def createSingelOnnxModel(ModelPath,nodename,SaveType="",SavePath=""):
model = loadOnnxModel(str(ModelPath))
Node,input_name,output_name = getNodeAndIOname(nodename,model)
in_tvi = getInputTensorValueInfo(input_name,model)
out_tvi = getOutputTensorValueInfo(output_name,model)
init_t = getInitTensorValue(input_name,model)
graph_def = helper.make_graph(
[Node],
nodename,
inputs=in_tvi, # 输入
outputs=out_tvi, # 输出
initializer=init_t, # initalizer
model_def = helper.make_model(graph_def, producer_name='onnx-example')
print(nodename+"onnx模型生成成功!")
#获取节点数量
def getNodeNum(model):
return len(model.graph.node)
#获取节点类型
def getNodetype(model):
op_name = []
for i in range(len(model.graph.node)):
if model.graph.node[i].op_type not in op_name:
op_name.append(model.graph.node[i].op_type)
return op_name
#获取节点名列表
def getNodeNameList(model):
NodeNameList = []
for i in range(len(model.graph.node)):
NodeNameList.append(model.graph.node[i].name)
return NodeNameList
#获取模型的输入信息
def getModelInputInfo(model):
return model.graph.input[0]
#获取模型的输出信息
def getModelOutputInfo(model):
return model.graph.output[0:4]