使用opencv将8/10/12/16bit的YUV422格式的raw图转为rgb图
时间: 2023-12-21 12:07:04
浏览: 244

Yuv2rgb.tar.gz_YUV422 RGB_filter yuv422 yuv420_yuv2rgb linux_yuv
可以使用[opencv](https://wenku.csdn.net/doc/6401abdecce7214c316e9cbb?spm=1055.2569.3001.10083)中的cv::cvt[color](https://wenku.csdn.net/doc/6401acf5cce7214c316edc4e?spm=1055.2569.3001.10083)函数将YUV422格式的raw图像转换为RGB图像。具体的实现步骤如下:
1. 读取YUV422格式的raw图像数据,并将其存储在一个cv::Mat对象中。
2. 调用cv::cvtColor函数,将YUV422格式的图像转换为RGB图像。函数的参数如下:
cv::cvtColor(input_image, output_image, cv::COLOR_YUV2RGB_Y422);
其中,input_image为输入的YUV422格式的raw图像,output_image为输出的RGB图像,cv::COLOR_YUV2RGB_Y422为转换的颜色空间。
3. 将转换后的RGB图像保存到文件中,或者进行其他的处理。
下面是一个示例代码:
```c++
#include <opencv2/opencv.hpp>
using name[space](https://wenku.csdn.net/doc/64522ebaea0840391e739055?spm=1055.2569.3001.10083) cv;
int main(int argc, char** argv)
// 读取YUV422格式的raw图像数据
FILE* fp = fopen("input.yuv", "rb");
int width = 640;
int height = 480;
int [channels](https://wenku.csdn.net/doc/6401ab9ccce7214c316e8def?spm=1055.2569.3001.10083) = 2; // YUV422格式的通道数为2
Mat yuv_image(height, width * channels, CV_8UC1);
fread(yuv_image.data, 1, width * height * channels, fp);
f[close](https://wenku.csdn.net/doc/6401ac87cce7214c316ec2fa?spm=1055.2569.3001.10083)(fp);
// 将YUV422格式的图像转换为RGB图像
Mat rgb_image;
cvtColor(yuv_image, rgb_image, COLOR_YUV2RGB_Y422);
// 将转换后的RGB图像保存到文件中
imwrite("output.jpg", rgb_image);
return 0;
注意:在读取YUV422格式的raw图像数据时,需要按照图像的存储方式进行读取。YUV422格式的图像每个像素由一个Y值和一个UV值组成,存储方式为Y0 U0 Y1 V0,即先存储Y值,再存储UV值。因此,在读取数据时需要按照这种存储方式进行读取。
阅读全文
相关推荐
















