添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China.
  • DFT calculations are performed at constant charge, while practical electrochemical reactions often take place under constant potential. To unravel the effect of the model difference on single-atom electrocatalysis, we implement benchmarked DFT and grand-canonical DFT calculations to systematically investigate the hydrogen adsorption on 99 single-atom M–N x C y motifs. We find that the initial electrode potentials for all M–N x C y are negative, leading to the loss of system electrons once their electrode potentials are fixed at 0 V/SHE. We prove that the quantitive difference of Δ G (*H) between the CCM and CPM is proportional to the square difference of total charge change before and after H adsorption, which originates from the adjustment of electronic occupation states. Our work provides theoretical insight into the differential capacitance model in the graphene-confining SACs for the HER and emphasizes the importance of CPM for in silico design of electrocatalysts. 中文翻译: DFT 计算是在恒定电荷下进行的,而实际的电化学反应通常在恒定电位下进行。为了揭示模型差异对单原子电催化的影响,我们实施了基准 DFT 和大规范 DFT 计算,以系统地研究 99 个单原子 M-N x C y 基序上的氢吸附。我们发现所有 M-N x C y 的初始电极电位都是负的,一旦它们的电极电位固定在 0 V/SHE,就会导致系统电子的损失。我们证明了 Δ G的数量差异 CCM 和 CPM 之间的 (*H) 与 H 吸附前后总电荷变化的平方差成正比,这源于电子占据状态的调整。我们的工作为 HER 的石墨烯限制 SAC 中的微分电容模型提供了理论见解,并强调了 CPM 在电子 催化剂设计中的重要性。