选自GitHub
机器之心编译
参与:杨洁湫、李亚洲
在前一段时间,Han Zhang 和 Goodfellow 等研究者提出添加了自注意力机制的生成对抗网络,这种网络可使用全局特征线索来生成高分辨率细节。本文介绍了自注意力生成对抗网络的 PyTorch 实现,读者也可以尝试这一新型生成对抗网络。
项目地址:https://github.com/heykeetae/Self-Attention-GAN
这个资源库提供了一个使用 PyTorch 实现的 SAGAN。其中作者准备了 wgan-gp 和 wgan-hinge 损失函数,但注意 wgan-gp 有时与谱归一化(spectral normalization)是不匹配的;因此,作者会移除模型所有的谱归一化来适应 wgan-gp。
在这个实现中,自注意机制会应用到生成器和鉴别器的两个网络层。像素级的自注意力会增加 GPU 资源的调度成本,且每个像素有不同的注意力掩码。Titan X GPU 大概可选择的批量大小为 8,你可能需要减少自注意力模块的数量来减少内存消耗。
目前更新状态:
结果