添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Sichuan Da Xue Xue Bao Yi Xue Ban. 2024 Jan 20; 55(1): 24–30.
PMCID: PMC10839487

Language: Chinese | English

液-液相分离在肿瘤中作用的研究新进展

Research Progress in the Role of Liquid-Liquid Phase Separation in Human Cancer

若琳 陶

郑州大学第一附属医院 肝胆胰外科 (郑州 450000), Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China 河南省消化器官移植重点实验室 (郑州 450000), Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou 450000, China

Find articles by 若琳 陶

水军 张

郑州大学第一附属医院 肝胆胰外科 (郑州 450000), Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China 河南省消化器官移植重点实验室 (郑州 450000), Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou 450000, China

Find articles by 水军 张

文治 郭

郑州大学第一附属医院 肝胆胰外科 (郑州 450000), Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China 河南省消化器官移植重点实验室 (郑州 450000), Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou 450000, China

Find articles by 文治 郭

志平 闫

郑州大学第一附属医院 肝胆胰外科 (郑州 450000), Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China 河南省消化器官移植重点实验室 (郑州 450000), Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou 450000, China 郑州大学第一附属医院 肝胆胰外科 (郑州 450000), Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China 河南省消化器官移植重点实验室 (郑州 450000), Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou 450000, China

E-mail: moc.361@uzz_pznay *    *    *

作者贡献声明 陶若琳负责论文构思、经费获取、初稿写作和审读与编辑写作,张水军和郭文治负责提供资源和监督指导,闫志平负责论文构思、经费获取和审读与编辑写作。所有作者已经同意将文章提交给本刊,且对要发表的版本进行最终定稿,并同意对工作的所有方面负责。

Author Contribution TAO Ruolin is resposible for the conceptualization, funding acquisition, writing--original draft, and writing--review and editing. ZHANG Shuijun and GUO Wenzhi are resposible for the resources and supervision. YAN Zhiping is resposible for the conceptualization, funding acquisition, and writing--review and editing. All authors consented to the submission of the article to the Journal. All authors approved the final version to be published and agreed to take responsibility for all aspects of the work.

利益冲突 所有作者均声明不存在利益冲突

Declaration of Conflicting Interests All authors declare no competing interests.

Funding Statement

国家自然科学基金(No.32201068)和河南省慈善总会肝胆相照基金 (No. GDXZ2021001)资助

References

1. ZHANG H, JI X, LI P, et al Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci. 2020; 63 (7):953–985. doi: 10.1007/s11427-020-1702-x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. DENG H, MIN E, BAEYENS N, et al Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proc Natl Acad Sci U S A. 2021; 118 (37):e2105339118. doi: 10.1073/pnas.2105339118. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. LI P, BANJADE S, CHENG H C, et al Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012; 483 (7389):336–340. doi: 10.1038/nature10879. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. ALBERTI S, GLADFELTER A, MITTAG T Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019; 176 (3):419–434. doi: 10.1016/j.cell.2018.12.035. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. LARSON A G, ELNATAN D, KEENEN M M, et al Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature. 2017; 547 (7662):236–240. doi: 10.1038/nature22822. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. REN J, ZHANG Z, ZONG Z, et al Emerging implications of phase separation in cancer. Adv Sci (Weinh) 2022; 9 (31):e2202855. doi: 10.1002/advs.202202855. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. BOEYNAEMS S, ALBERTI S, FAWZI N L, et al Protein phase separation: a new phase in cell biology. Trends Cell Biol. 2018; 28 (6):420–435. doi: 10.1016/j.tcb.2018.02.004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. ALBERTI S, DORMANN D Liquid-liquid phase separation in disease. Annu Rev Genet. 2019; 53 :171–194. doi: 10.1146/annurev-genet-112618-043527. [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. SHIN Y, BRANGWYNNE C P Liquid phase condensation in cell physiology and disease. Science. 2017; 357 (6357):eaaf4382. doi: 10.1126/science.aaf4382. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. MATHIEU C, PAPPU R V, PAUL TAYLOR J Beyond aggregation, Pathological phase transitions in neurodegenerative disease. Science. 2020; 370 (6512):56–60. doi: 10.1126/science.abb8032. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. ZENG M, SHANG Y, ARAKI Y, et al Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell. 2016; 166 (5):1163–1175.e1112. doi: 10.1016/j.cell.2016.07.008. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. GUO Q, SHI X, WANG X RNA and liquid-liquid phase separation. Noncoding RNA Res. 2021; 6 (2):92–99. doi: 10.1016/j.ncrna.2021.04.003. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. BANANI S F, LEE H O, HYMAN A A, et al Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017; 18 (5):285–298. doi: 10.1038/nrm.2017.7. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. ZEMLA J, DANILKIEWICZ J, ORZECHOWSKA B, et al Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin Cell Dev Biol. 2018; 73 :115–124. doi: 10.1016/j.semcdb.2017.06.029. [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. BOIJA A, KLEIN I A, YOUNG R A Biomolecular condensates and cancer. Cancer Cell. 2021; 39 (2):174–192. doi: 10.1016/j.ccell.2020.12.003. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. BIRSA N, ULE A M, GARONE M G, et al FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. Sci Adv. 2021; 7 (30):eabf8660. doi: 10.1126/sciadv.abf8660. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. LANGDON E M, QIU Y, GHANBARI NIAKI A, et al mRNA structure determines specificity of a polyQ-driven phase separation. Science. 2018; 360 (6391):922–927. doi: 10.1126/science.aar7432. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. LIU S, WANG T, SHI Y, et al USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ. 2021; 28 (8):2482–2498. doi: 10.1038/s41418-021-00763-6. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. ZENG W J, LU C, SHI Y, et al Initiation of stress granule assembly by rapid clustering of IGF2BP proteins upon osmotic shock. Biochim Biophys Acta Mol Cell Res. 2020; 1867 (10):118795. doi: 10.1016/j.bbamcr.2020.118795. [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. WHEELER J R, MATHENY T, JAIN S, et al Distinct stages in stress granule assembly and disassembly. Elife. 2016; 5 :e18413. doi: 10.7554/eLife.18413. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. ZHANG M, PENG S The association and clinical relevance of phase-separating protein CAPRIN1 with noncoding RNA. Cell Stress Chaperones. 2023; 28 (2):125–132. doi: 10.1007/s12192-023-01320-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. LAVALEE M, CURDY N, LAURENT C, et al Cancer cell adaptability: turning ribonucleoprotein granules into targets. Trends Cancer. 2021; 7 (10):902–915. doi: 10.1016/j.trecan.2021.05.006. [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. FIJEN C, ROTHENBERG E The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105 :103170. doi: 10.1016/j.dnarep.2021.103170. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. SOMASUNDARAM K, GUPTA B, JAIN N, et al lncRNAs divide and rule: the master regulators of phase separation. Front Genet. 2022; 13 :930792. doi: 10.3389/fgene.2022.930792. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. LEE S, KOPP F, CHANG T C, et al Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016; 164 (1/2):69–80. doi: 10.1016/j.cell.2015.12.017. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. SHI P, ZHANG J, LI X, et al Long non-coding RNA NORAD inhibition upregulates microRNA-323a-3p to suppress tumorigenesis and development of breast cancer through the PUM1/eIF2 axis. Cell Cycle. 2021; 20 (13):1295–1307. doi: 10.1080/15384101.2021.1934627. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. ELGUINDY M M, MENDELL J T NORAD-induced Pumilio phase separation is required for genome stability. Nature. 2021; 595 (7866):303–308. doi: 10.1038/s41586-021-03633-w. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. WANG R, CAO L, THORNE R F, et al lncRNA GIRGL drives CAPRIN1-mediated phase separation to suppress glutaminase-1 translation under glutamine deprivation. Sci Adv. 2021; 7 (13):eabe5708. doi: 10.1126/sciadv.abe5708. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. WANG X, GUO Y, CHEN G, et al Therapeutic targeting of FUBP3 phase separation by GATA2-AS1 inhibits malate-aspartate shuttle and neuroblastoma progression via modulating SUZ12 activity. Oncogene. 2023; 42 (36):2673–2687. doi: 10.1038/s41388-023-02798-0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. LI R H, TIAN T, GE Q W, et al A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling. Cell Res. 2021; 31 (10):1088–1105. doi: 10.1038/s41422-021-00530-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. HAN X, YU D, GU R, et al Roles of the BRD4 short isoform in phase separation and active gene transcription. Nat Struct Mol Biol. 2020; 27 (4):333–341. doi: 10.1038/s41594-020-0394-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. LI W, WU L, JIA H, et al The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression. Cell Mol Biol Lett. 2021; 26 (1):45. doi: 10.1186/s11658-021-00292-7. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. ZHANG D, WANG H, SUN M, et al Speckle-type POZ protein, SPOP, is involved in the DNA damage response. Carcinogenesis. 2014; 35 (8):1691–1697. doi: 10.1093/carcin/bgu022. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. BOUCHARD J J, OTERO J H, SCOTT D C, et al Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell. 2018; 72 (1):19–36. doi: 10.1016/j.molcel.2018.08.027. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. GHODKE I, REMISOVA M, FURST A, et al AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Mol Cell. 2021; 81 (12):2596–2610.e2597. doi: 10.1016/j.molcel.2021.04.010. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. FARUK M O, ICHIMURA Y, KOMATSU M Selective autophagy. Cancer Sci. 2021; 112 (10):3972–3978. doi: 10.1111/cas.15112. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. NODA N N, WANG Z, ZHANG H Liquid-liquid phase separation in autophagy. J Cell Biol. 2020; 219 (8):e202004062. doi: 10.1083/jcb.202004062. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
38. LI X, HE S, MA B Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020; 19 (1):12. doi: 10.1186/s12943-020-1138-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
39. DEBNATH J, GAMMOH N, RYAN K M Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023; 24 (8):560–575. doi: 10.1038/s41580-023-00585-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. BERKAMP S, MOSTAFAVI S, SACHSE C Structure and function of p62/SQSTM1 in the emerging framework of phase separation. FEBS J. 2020; 288 (24):6927–6941. doi: 10.1111/febs.15672. [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. SUN D, WU R, ZHENG J, et al Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 2018; 28 (4):405–415. doi: 10.1038/s41422-018-0017-7. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. TAN C T, CHANG H C, ZHOU Q, et al MOAP-1-mediated dissociation of p62/SQSTM1 bodies releases Keap1 and suppresses Nrf2 signaling. EMBO Rep. 2021; 22 (1):e50854. doi: 10.15252/embr.202050854. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. SANCHEZ-MARTIN P, SOU Y S, KAGEYAMA S, et al NBR1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system. EMBO Rep. 2020; 21 (3):e48902. doi: 10.15252/embr.201948902. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. CLOER E W, SIESSER P F, COUSINS E M, et al p62-dependent phase separation of patient-derived KEAP1 mutations and NRF2. Mol Cell Biol. 2018; 38 (22):e00644–e00617. doi: 10.1128/MCB.00644-17. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
45. ESKELINEN E L, KAGEYAMA S, KOMATSU M p62/SQSTM1 droplets initiate autophagosome biogenesis and oxidative stress control. Mol Cell Oncol. 2021; 8 (2):1890990. doi: 10.1080/23723556.2021.1890990. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
46. PENG S Z, CHEN X H, CHEN S J, et al Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates. Nat Commun. 2021; 12 (1):5989. doi: 10.1038/s41467-021-26295-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. TAN C T, SOH N J H, CHANG H C, et al p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J. 2021; 290 (4):892–912. doi: 10.1111/febs.16317. [ PubMed ] [ CrossRef ] [ Google Scholar ]
48. SRINIVASULA S M, LAHIRI P, SCHMIDT V, et al p62/Sequestosome-1 is indispensable for maturation and stabilization of Mallory-Denk Bodies. PLoS One. 2016; 11 (8):e0161083. doi: 10.1371/journal.pone.0161083. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. KOMATSU M p62 bodies: phase separation, NRF2 activation, and selective autophagic degradation. IUBMB Life. 2022; 74 (12):1200–1208. doi: 10.1002/iub.2689. [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. KURUSU R, FUJIMOTO Y, MORISHITA H, et al Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex. Dev Cell. 2023; 58 (13):1189–1205.e1111. doi: 10.1016/j.devcel.2023.04.015. [ PubMed ] [ CrossRef ] [ Google Scholar ]
51. KURUSU R, MORISHITA H, KOMATSU M Vault-phagy: a phase-separation-mediated selective autophagy of vault, a non-membranous organelle. Autophagy. 2023:1–2. doi: 10.1080/15548627.2023.2266996. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
52. GAO Y, TONG M, WONG T L, et al Long noncoding RNA URB1-antisense RNA 1 (AS1) suppresses sorafenib-induced ferroptosis in hepatocellular carcinoma by driving ferritin phase separation. ACS Nano. 2023; 17 (22):22240–22258. doi: 10.1021/acsnano.3c01199. [ PubMed ] [ CrossRef ] [ Google Scholar ]
53. FAN X, LIU F, WANG X, et al LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. Sci China Life Sci. 2023 doi: 10.1007/s11427-023-2425-2. [ PubMed ] [ CrossRef ] [ Google Scholar ]
54. LI Y, PENG Q, WANG L EphA2 as a phase separation protein associated with ferroptosis and immune cell infiltration in colorectal cancer. Aging (Albany NY) 2023; 15 (22):12952–12965. doi: 10.18632/aging.205212. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
55. NAKAMURA T, HIPP C, SANTOS DIAS MOURÃO A, et al Phase separation of FSP1 promotes ferroptosis. Nature. 2023; 619 (7969):371–377. doi: 10.1038/s41586-023-06255-6. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
56. PAN J, FEI C J, HU Y, et al Current understanding of the cGAS-STING signaling pathway: structure, regulatory mechanisms, and related diseases. Zool Res. 2023; 44 (1):183–218. doi: 10.24272/j.issn.2095-8137.2022.464. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
57. YU X, ZHANG L, SHEN J, et al The STING phase-separator suppresses innate immune signalling. Nat Cell Biol. 2021; 23 (4):330–340. doi: 10.1038/s41556-021-00659-0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. XIAO Q, MCATEE C K, SU X Phase separation in immune signalling. Nat Rev Immunol. 2021; 22 (3):188–199. doi: 10.1038/s41577-021-00572-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
59. MINGJIAN DU Z J C DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018; 361 (6430):704–709. doi: 10.1126/science.aat1022. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
60. YAO Y, WANG W, CHEN C, et al Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. PNAS Nexus. 2022; 1 (3):pgac109. doi: 10.1093/pnasnexus/pgac109. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
61. XU G, LIU C, ZHOU S, et al Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Mol Cell. 2021; 81 (13):2823–2837.e2829. doi: 10.1016/j.molcel.2021.05.002. [ PubMed ] [ CrossRef ] [ Google Scholar ]
62. MENG F, YU Z, ZHANG D, et al Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell. 2021; 81 (20):4147–4164.e4147. doi: 10.1016/j.molcel.2021.07.040. [ PubMed ] [ CrossRef ] [ Google Scholar ]
63. ZHANG W, LIU W, JIA L, et al Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol Cell. 2021; 81 (10):2148–2165.e2149. doi: 10.1016/j.molcel.2021.02.038. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)