使用explode函数将hive表中的Map和Array字段数据进行拆分
lateral view用于和split、explode等UDTF一起使用的,能将一行数据拆分成多行数据,在此基础上可以对拆分的数据进行聚合,lateral view首先为原始表的每行调用UDTF,UDTF会把一行拆分成一行或者多行,lateral view在把结果组合,产生一个支持别名表的虚拟表。
其中explode还可以用于将hive一列中复杂的array或者map结构拆分成多行
需求:现在有数据格式如下
zhangsan child1,child2,child3,child4 k1:v1,k2:v2
lisi child5,child6,child7,child8 k3:v3,k4:v4
字段之间使用\t分割,需求将所有的child进行拆开成为一列
+----------+--+
| mychild |
+----------+--+
| child1 |
| child2 |
| child3 |
| child4 |
| child5 |
| child6 |
| child7 |
| child8 |
+----------+--+
将map的key和value也进行拆开,成为如下结果
+-----------+-------------+--+
| mymapkey | mymapvalue |
+-----------+-------------+--+
| k1 | v1 |
| k2 | v2 |
| k3 | v3 |
| k4 | v4 |
+-----------+-------------+--+
创建hive数据库
创建hive数据库
hive (default)> create database hive_explode;
hive (default)> use hive_explode;
创建hive表,然后使用explode拆分map和array
hive (hive_explode)> create table t3(
name string,
children array<string>,
address Map<string,string>
) row format delimited fields terminated by '\t'
collection items terminated by ','
map keys terminated by ':'
stored as textFile;
node03执行以下命令创建表数据文件
mkdir -p /export/servers/hivedatas/
cd /export/servers/hivedatas/
vim maparray
内容如下:
zhangsan child1,child2,child3,child4 k1:v1,k2:v2
lisi child5,child6,child7,child8 k3:v3,k4:v4
hive表当中加载数据
hive (hive_explode)> load data local inpath '/export/servers/hivedatas/maparray' into table t3;
使用explode将hive当中数据拆开
将array当中的数据拆分开
hive (hive_explode)> SELECT explode(children) AS myChild FROM t3;
将map当中的数据拆分开
hive (hive_explode)> SELECT explode(address) AS (myMapKey, myMapValue) FROM t3;
使用explode拆分json字符串
需求: 需求:现在有一些数据格式如下:
a:shandong,b:beijing,c:hebei|
1,2,3,4,5,6,7,8,9|
[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},
{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},
{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]
其中字段与字段之间的分隔符是 |
我们要解析得到所有的monthSales对应的值为以下这一列(行转列)
创建hive表
hive (hive_explode)> create table explode_lateral_view
> (`area` string,
> `goods_id` string,
> `sale_info` string)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY '|'
> STORED AS textfile;
准备数据并加载数据
准备数据如下
cd /export/servers/hivedatas
vim explode_json
a:shandong,b:beijing,c:hebei|
1,2,3,4,5,6,7,8,9|
[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},
{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},
{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]
加载数据到hive表当中去
hive (hive_explode)> load data local inpath '/export/servers/hivedatas/explode_json'
> overwrite into table explode_lateral_view;
使用explode拆分Array
hive (hive_explode)> select explode(split(goods_id,',')) as goods_id from explode_lateral_view;
使用explode拆解Map
hive (hive_explode)> select explode(split(area,',')) as area from explode_lateral_view;
拆解json字段
hive (hive_explode)> select explode(split(regexp_replace(regexp_replace(sale_info,
> '\\[\\{',''),'}]',''),'},\\{')) as sale_info from explode_lateral_view;
然后我们想用get_json_object来获取key为monthSales的数据:
hive (hive_explode)> select get_json_object(explode(split(regexp_replace(regexp_replace(sale_info,
> '\\[\\{',''),'}]',''),'},\\{')),'$.monthSales') as sale_info from explode_lateral_view;
然后挂了FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions
UDTF explode不能写在别的函数内
如果你这么写,想查两个字段,select explode(split(area,',')) as area,good_id from explode_lateral_view;
会报错FAILED: SemanticException 1:40 Only a single expression in the SELECT clause is supported with UDTF's.
Error encountered near token 'good_id'
使用UDTF的时候,只支持一个字段,这时候就需要LATERAL VIEW出场了
配合LATERAL VIEW使用
配合lateral view查询多个字段
select
goods_id2,sale_info
explode_lateral_view LATERAL VIEW explode(split(goods_id,',')) goods as goods_id2;
其中LATERAL VIEW explode(split(goods_id,','))goods相当于一个虚拟表,与原表explode_lateral_view笛卡尔积关联
也可以多重使用
hive (hive_explode)> select goods_id2,sale_info,area2
from explode_lateral_view
LATERAL VIEW explode(split(goods_id,','))goods as goods_id2
LATERAL VIEW explode(split(area,','))area as area2;也是三个表笛卡尔积的结果
最终,我们可以通过下面的句子,把这个json格式的一行数据,完全转换成二维表的方式展现
select
get_json_object(concat('{',sale_info_1,'}'),'$.source') as source,
get_json_object(concat('{',sale_info_1,'}'),'$.monthSales') as monthSales,
get_json_object(concat('{',sale_info_1,'}'),'$.userCount') as monthSales,
get_json_object(concat('{',sale_info_1,'}'),'$.score') as monthSales
explode_lateral_view LATERAL VIEW explode(split(regexp_replace(regexp_replace(sale_info,
'\\[\\{',''),'}]',''),'},\\{')) sale_info as sale_info_1;
Lateral View通常和UDTF一起出现,为了解决UDTF不允许在select字段的问题。Multiple Lateral View可以实现类似笛卡尔乘积。Outer关键字可以把不输出的UDTF的空结果,输出成NULL,防止丢失数据。
相关参数说明:
CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字符串;
CONCAT_WS(separator, str1, str2,...):它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间;
COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生array类型字段。
数据准备:
constellation
blood_type
hive (hive_explode)> load data local inpath '/export/servers/hivedatas/constellation.txt' into table person_info
按需求查询数据
hive (hive_explode)> select
t1.base,
concat_ws('|', collect_set(t1.name)) name
(select
name,
concat(constellation, "," , blood_type) base
person_info) t1
group by
t1.base;
所需函数:
EXPLODE(col):将hive一列中复杂的array或者map结构拆分成多行。
LATERAL VIEW
用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias
解释:用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。
数据准备:
cd /export/servers/hivedatas
vim movie.txt
文件内容如下: 数据字段之间使用\t进行分割
《疑犯追踪》 悬疑,动作,科幻,剧情
《Lie to me》 悬疑,警匪,动作,心理,剧情
《战狼2》 战争,动作,灾难
需求: 将电影分类中的数组数据展开。结果如下:
《疑犯追踪》 悬疑
《疑犯追踪》 动作
《疑犯追踪》 科幻
《疑犯追踪》 剧情
《Lie to me》 悬疑
《Lie to me》 警匪
《Lie to me》 动作
《Lie to me》 心理
《Lie to me》 剧情
《战狼2》 战争
《战狼2》 动作
《战狼2》 灾难
实现步骤:
创建hive表
create table movie_info(
movie string,
category array<string>)
row format delimited fields terminated by "\t"
collection items terminated by ",";
load data local inpath "/export/servers/hivedatas/movie.txt" into table movie_info;
按需求查询数据
select
movie,
category_name
movie_info lateral view explode(category) table_tmp as category_name;
reflect函数
reflect函数可以支持在sql中调用java中的自带函数,秒杀一切udf函数。
需求1: 使用java.lang.Math当中的Max求两列中最大值
实现步骤:
创建hive表
create table test_udf(col1 int,col2 int) row format delimited fields terminated by ',';
准备数据并加载数据
cd /export/servers/hivedatas
vim test_udf
文件内容如下:
hive (hive_explode)> load data local inpath '/export/servers/hivedatas/test_udf' overwrite into table test_udf;
使用java.lang.Math当中的Max求两列当中的最大值
hive (hive_explode)> select reflect("java.lang.Math","max",col1,col2) from test_udf;
需求2: 文件中不同的记录来执行不同的java的内置函数
实现步骤:
创建hive表
hive (hive_explode)> create table test_udf2(class_name string,method_name string,col1 int , col2 int) row format delimited fields terminated by ',';
cd /export/servers/hivedatas
vim test_udf2
文件内容如下:
java.lang.Math,min,1,2
java.lang.Math,max,2,3
hive (hive_explode)> load data local inpath '/export/servers/hivedatas/test_udf2' overwrite into table test_udf2;
hive (hive_explode)> select reflect(class_name,method_name,col1,col2) from test_udf2;
需求3: 判断是否为数字
实现方式:
使用apache commons中的函数,commons下的jar已经包含在hadoop的classpath中,所以可以直接使用。
select reflect("org.apache.commons.lang.math.NumberUtils","isNumber","123")
Hive 窗口函数
窗口函数最重要的关键字是 partition by 和 order by
具体语法如下:XXX over (partition by xxx order by xxx)
特别注意:over()里面的 partition by 和 order by 都不是必选的,over()里面可以只有partition by,也可以只有order by,也可以两个都没有,大家需根据需求灵活运用。
窗口函数我划分了几个大类,我们一类一类的讲解。
1. SUM、AVG、MIN、MAX
讲解这几个窗口函数前,先创建一个表,以实际例子讲解大家更容易理解。
首先创建用户访问页面表:user_pv
create table user_pv(
cookieid string, -- 用户登录的cookie,即用户标识
createtime string, -- 日期
pv int -- 页面访问量
给上面这个表加上如下数据:
cookie1,2021-05-10,1
cookie1,2021-05-11,5
cookie1,2021-05-12,7
cookie1,2021-05-13,3
cookie1,2021-05-14,2
cookie1,2021-05-15,4
cookie1,2021-05-16,4
SUM()使用
执行如下查询语句:
select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime) as pv1
from user_pv;
结果如下:(因命令行原因,下图字段名和值是错位的,请注意辨别!)
over()里面加 order by 表示:分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号;
over()里面不加 order by 表示:将分组内所有值累加。
AVG,MIN,MAX,和SUM用法一样,这里就不展开讲了,但是要注意 AVG,MIN,MAX 的over()里面加不加 order by 也和SUM一样,如 AVG 求平均值,如果加上 order by,表示分组内从起点到当前行的平局值,不是全部的平局值。MIN,MAX 同理。
2. ROW_NUMBER、RANK、DENSE_RANK、NTILE
还是用上述的用户登录日志表:user_pv
,里面的数据换成如下所示:
cookie1,2021-05-10,1
cookie1,2021-05-11,5
cookie1,2021-05-12,7
cookie1,2021-05-13,3
cookie1,2021-05-14,2
cookie1,2021-05-15,4
cookie1,2021-05-16,4
cookie2,2021-05-10,2
cookie2,2021-05-11,3
cookie2,2021-05-12,5
cookie2,2021-05-13,6
cookie2,2021-05-14,3
cookie2,2021-05-15,9
cookie2,2021-05-16,7
ROW_NUMBER()使用:
ROW_NUMBER()从1开始,按照顺序,生成分组内记录的序列。
SELECT
cookieid,
createtime,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn
FROM user_pv;
结果如下:
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3
FROM user_pv
WHERE cookieid = 'cookie1';
结果如下:
有时会有这样的需求:如果数据排序后分为三部分,业务人员只关心其中的一部分,如何将这中间的三分之一数据拿出来呢?NTILE函数即可以满足。
ntile可以看成是:把有序的数据集合平均分配到指定的数量(num)个桶中, 将桶号分配给每一行。如果不能平均分配,则优先分配较小编号的桶,并且各个桶中能放的行数最多相差1。
然后可以根据桶号,选取前或后 n分之几的数据。数据会完整展示出来,只是给相应的数据打标签;具体要取几分之几的数据,需要再嵌套一层根据标签取出。
SELECT
cookieid,
createtime,
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1,
NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2,
NTILE(4) OVER(ORDER BY createtime) AS rn3
FROM user_pv
ORDER BY cookieid,createtime;
结果如下:
3. LAG、LEAD、FIRST_VALUE、LAST_VALUE
讲解这几个窗口函数时还是以实例讲解,首先创建用户访问页面表:user_url
CREATE TABLE user_url (
cookieid string,
createtime string, --页面访问时间
url string --被访问页面
表中加入如下数据:
cookie1,2021-06-10 10:00:02,url2
cookie1,2021-06-10 10:00:00,url1
cookie1,2021-06-10 10:03:04,1url3
cookie1,2021-06-10 10:50:05,url6
cookie1,2021-06-10 11:00:00,url7
cookie1,2021-06-10 10:10:00,url4
cookie1,2021-06-10 10:50:01,url5
cookie2,2021-06-10 10:00:02,url22
cookie2,2021-06-10 10:00:00,url11
cookie2,2021-06-10 10:03:04,1url33
cookie2,2021-06-10 10:50:05,url66
cookie2,2021-06-10 11:00:00,url77
cookie2,2021-06-10 10:10:00,url44
cookie2,2021-06-10 10:50:01,url55
LAG的使用:
LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值。
第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT cookieid,
createtime,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time
FROM user_url;
结果如下:
last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'
cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
cookie1第三行,往上1行值为第二行值,2021-06-10 10:00:02
cookie1第六行,往上1行值为第五行值,2021-06-10 10:50:01
last_2_time: 指定了往上第2行的值,为指定默认值
cookie1第一行,往上2行为NULL
cookie1第二行,往上2行为NULL
cookie1第四行,往上2行为第二行值,2021-06-10 10:00:02
cookie1第七行,往上2行为第五行值,2021-06-10 10:50:01
LEAD的使用:
与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值。
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT cookieid,
createtime,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time
FROM user_url;
结果如下:
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1
FROM user_url;
结果如下:
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1
FROM user_url
结果如下:
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2
FROM user_url
ORDER BY cookieid,createtime;
注意上述SQL,使用的是 FIRST_VALUE 的倒序取出分组内排序最后一个值!
结果如下:
上述 url2 和 url55 的createtime即不属于最靠前的时间也不属于最靠后的时间,所以结果是混乱的。
4. CUME_DIST
先创建一张员工薪水表:staff_salary
CREATE EXTERNAL TABLE staff_salary (
dept string,
userid string,
sal int
表中加入如下数据:
d1,user1,1000
d1,user2,2000
d1,user3,3000
d2,user4,4000
d2,user5,5000
CUME_DIST的使用:
此函数的结果和order by的排序顺序有关系。
CUME_DIST:小于等于当前值的行数/分组内总行数。order默认顺序 :正序
比如,统计小于等于当前薪水的人数,所占总人数的比例。
SELECT
dept,
userid,
CUME_DIST() OVER(ORDER BY sal) AS rn1,
CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2
FROM staff_salary;
结果如下:
第三行:小于等于3000的行数为3,因此,3/5=0.6
rn2: 按照部门分组,dpet=d1的行数为3,
第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666
5. GROUPING SETS、GROUPING__ID、CUBE、ROLLUP
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。
还是先创建一个用户访问表:user_date
CREATE TABLE user_date (
month STRING,
day STRING,
cookieid STRING
表中加入如下数据:
2021-03,2021-03-10,cookie1
2021-03,2021-03-10,cookie5
2021-03,2021-03-12,cookie7
2021-04,2021-04-12,cookie3
2021-04,2021-04-13,cookie2
2021-04,2021-04-13,cookie4
2021-04,2021-04-16,cookie4
2021-03,2021-03-10,cookie2
2021-03,2021-03-10,cookie3
2021-04,2021-04-12,cookie5
2021-04,2021-04-13,cookie6
2021-04,2021-04-15,cookie3
2021-04,2021-04-15,cookie2
2021-04,2021-04-16,cookie1
GROUPING SETS的使用:
grouping sets是一种将多个group by 逻辑写在一个sql语句中的便利写法。
等价于将不同维度的GROUP BY结果集进行UNION ALL。
SELECT
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM user_date
GROUP BY month,day
GROUPING SETS (month,day)
ORDER BY GROUPING__ID;
注:上述SQL中的GROUPING__ID,是个关键字,表示结果属于哪一个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day。
结果如下:
上述SQL等价于:
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM user_date
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM user_date GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM user_date GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM user_date GROUP BY month,day;
ROLLUP的使用:
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
比如,以month维度进行层级聚合:
SELECT
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM user_date
GROUP BY month,day
WITH ROLLUP
ORDER BY GROUPING__ID;
结果如下: