添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical School Worcester MA 01605 USA
  • State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua University Shanghai 201620 China
  • Texas A&M Institute of Biosciences & Technology 2121 W Holcombe Blvd. Houston TX 77030 USA
  • School of Life ScienceUniversity of Science & Technology of China 443 Huangshan Street Hefei City Anhui 230027 China
  • 已经开发了光遗传学来控制细胞的活动和功能,具有高的时空分辨率,细胞类型特异性和灵活性。但是,当前的光遗传学工具通常依赖具有浅组织穿透能力的可见光(例如蓝色或黄色),这确实需要侵入式光纤探头将可见光传递到器官和动物组织中。这通常会导致一系列副作用,例如组织损伤和有害的炎症。幸运的是,由于可以减少对深层组织穿透的近红外(NIR)光的影响,新兴的无线光遗传学工具已经受到了越来越多的关注,因为它们对生物体的损害大大减少了。NIR可激活的光遗传学工具主要有两种:一种是使用镧系元素掺杂的上转换纳米粒子将近红外光转换为可见光,从而调制表达视蛋白的经典神经元。另一种则与NIR吸收剂耦合,将NIR光转换为热量以激活热敏蛋白。这些可近红外激活的光遗传学工具可实现低侵入性的“远程控制”激活和细胞信号通路的抑制。这种方法具有巨大的潜力,可以在不久的将来为癌症,糖尿病和神经元疾病等疾病开发出更具创新性的疗法。因此,本文综述了用于无线光遗传学应用的可近红外激活纳米材料的设计策略和合成方法的最新进展。另一种则与NIR吸收剂耦合,将NIR光转换为热量以激活热敏蛋白。这些可近红外激活的光遗传学工具可实现低侵入性的“远程控制”激活和细胞信号通路的抑制。这种方法具有巨大的潜力,可以在不久的将来为癌症,糖尿病和神经元疾病等疾病开发出更具创新性的疗法。因此,本文综述了用于无线光遗传学应用的可近红外激活纳米材料的设计策略和合成方法的最新进展。另一种则与NIR吸收剂耦合,将NIR光转换为热量以激活热敏蛋白。这些可近红外激活的光遗传学工具可实现低侵入性的“远程控制”激活和细胞信号通路的抑制。这种方法具有巨大的潜力,可以在不久的将来为癌症,糖尿病和神经元疾病等疾病开发出更具创新性的疗法。因此,本文综述了用于无线光遗传学应用的可近红外激活纳米材料的设计策略和合成方法的最新进展。和神经元疾病在不久的将来。因此,本文综述了用于无线光遗传学应用的可近红外激活纳米材料的设计策略和合成方法的最新进展。和神经元疾病在不久的将来。因此,本文综述了用于无线光遗传学应用的可近红外激活纳米材料的设计策略和合成方法的最新进展。 Optogenetics has been developed to control the activities and functions of cells with high spatiotemporal resolution, cell‐type specificity, and flexibility. However, current optogenetic tools generally rely on visible light (e.g., blue or yellow) with shallow tissue penetration ability that does require invasive fiber‐optic probes to deliver visible light into organs and animal tissues. This often results in a series of side effects, such as tissue damage and unwanted inflammation. Fortunately, the emerging wireless optogenetic tools that can respond to deep‐tissue‐penetrating near‐infrared (NIR) light have attracted increasing attention due to their much‐reduced damage to living organisms. There are mainly two types of NIR‐activatable optogenetic tools: one uses lanthanide‐doped upconversion nanoparticles to transduce NIR light to visible light to modulate classical opsin‐expressing neurons; the other type couples with an NIR absorber to convert NIR light to heat to activate thermosensitive proteins. These NIR‐activatable optogenetic tools enable low‐invasive “remote control” activation and inhibition of cellular signaling pathways. This approach has great potential to help create more innovative therapies for diseases like cancer, diabetes, and neuronal disorders in the near future. Therefore, this review article summarizes the recent advances on design strategies and synthetic methods of NIR‐activatable nanomaterials for wireless optogenetic applications.