1.
Hinton G E, Salakhutdinov R R Reducing the dimensionality of data with neural networks.
Science.
2006;
313
(5786):504–507. doi: 10.1126/science.1127647.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Hirschberg J, Manning C D Advances in natural language processing.
Science.
2015;
349
(6245):261–266. doi: 10.1126/science.aaa8685.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Rybchak Z, Basystiuk O Analysis of computer vision and image analysis technics.
Econtechmod.
2017;
6
(2):79–84.
[
Google Scholar
]
4.
Mikolov T, Deoras A, Povey D, et al. Strategies for training large scale neural network language models// 2011 IEEE Workshop on Automatic Speech Recognition & Understanding. Hawaii: IEEE, 2011: 196-201.
5.
Spencer M, Eickholt J, Cheng J A deep learning network approach to ab initio protein secondary structure prediction.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
2015;
12
(1):103–112. doi: 10.1109/TCBB.2014.2343960.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Basheer I A, Hajmeer M Artificial neural networks: fundamentals, computing, design, and application.
Journal of Microbiological Methods.
2000;
43
(1):3–31. doi: 10.1016/S0167-7012(00)00201-3.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Safavian S R, Landgrebe D A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man, and Cybernetics.
1991;
21
(3):660–674. doi: 10.1109/21.97458.
[
CrossRef
]
[
Google Scholar
]
8.
Wu J, Ji Y, Zhao L, et al A mass spectrometric analysis method based on PPCA and SVM for early detection of ovarian cancer.
Computational and Mathematical Methods in Medicine.
2016;
2016
:6169249.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
9.
Hinton G E, Osindero S, Teh Y W A fast learning algorithm for deep belief nets.
Neural Computation.
2006;
18
(7):1527–1554. doi: 10.1162/neco.2006.18.7.1527.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks// Advances in Neural Information Processing Systems 19 (NIPS 2006). Vancouver: MIT Press, 2006: 153-160.
11.
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks// Advances in Neural Information Processing Systems 25 (NIPS 2012). Lake Tahoe: MIT Press, 2012: 1097-1105.
12.
El Hihi S, Bengio Y. Hierarchical recurrent neural networks for long-term dependencies// Advances in Neural Information Processing Systems 8 (NIPS 1995). Denver: MIT Press, 1995: 493-499.
13.
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// Advances in Neural Information Processing Systems 27 (NIPS 2014). Montreal: MIT Press, 2014: 2672-2680.
14.
Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv, 2013: 1312.6203.
15.
Hubel D H, Wiesel T N Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.
The Journal of Physiology.
1962;
160
(1):106–154. doi: 10.1113/jphysiol.1962.sp006837.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE Computer Society, 2015: 1-9.
17.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
18.
Werbos P J Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE.
1990;
78
(10):1550–1560. doi: 10.1109/5.58337.
[
CrossRef
]
[
Google Scholar
]
19.
Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks// International Conference on Machine Learning. Edinburgh: ACM, 2013: 1310-1318.
20.
Hochreiter S, Schmidhuber J Long short-term memory.
Neural Computation.
1997;
9
(8):1735–1780. doi: 10.1162/neco.1997.9.8.1735.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv, 2016: 1609.02907.
22.
Palm R B. Prediction as a candidate for learning deep hierarchical models of data. Copenhagen: Technical University of Denmark, 2012.
23.
Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding// Proceedings of the 22nd ACM International Conference on Multimedia. San Francisco: ACM, 2014: 675-678.
24.
Bergstra J, Breuleux O, Bastien F, et al. Theano: a CPU and GPU math expression compiler// Proceedings of the Python for Scientific Computing Conference (SciPy). Austin: Enthought, 2010, 4(3).
25.
Abadi M, Agarwal A, Barham P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv, 2016: 1603.04467.
26.
Chen T, Li M, Li Y, et al. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv, 2015: 1512.01274.
27.
Chollet F. Keras: Theano-based deep learning library. Code: https://github.com/fchollet. Documentation: http://keras.io, 2015.
28.
Ketkar N. Introduction to pytorch// Deep learning with python. Berkeley: Apress, 2017: 195-208.
29.
Team D Deeplearning4j: Open-source distributed deep learning for the JVM.
Apache Software Foundation License.
2016:2.
[
Google Scholar
]
30.
Lipton Z C, Kale D C, Elkan C, et al. Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv, 2015: 1511.03677.
31.
Haque A, Guo M, Miner A S, et al. Measuring depression symptom severity from spoken language and 3D facial expressions. arXiv preprint arXiv, 2018: 1811.08592.
32.
Kamnitsas K, Ledig C, Newcombe V F J, et al Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
Medical Image Analysis.
2017;
36
:61–78. doi: 10.1016/j.media.2016.10.004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
Wang S, Zhou M, Liu Z, et al Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation.
Medical Image Analysis.
2017;
40
:172–183. doi: 10.1016/j.media.2017.06.014.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
Zhao X, Wu Y, Song G, et al A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.
Medical Image Analysis.
2018;
43
:98–111. doi: 10.1016/j.media.2017.10.002.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
Alom M Z, Hasan M, Yakopcic C, et al. Recurrent residual convolutional neural network based on U-net (R2U-net) for medical image segmentation. arXiv preprint arXiv, 2018: 1802.06955.
36.
叶海, 冯开平, 谢红宁 基于全卷积网络的胎儿脑部超声图像分割算法
现代计算机
2019;(17):12.
[
Google Scholar
]
37.
Anthimopoulos M, Christodoulidis S, Ebner L, et al Lung pattern classification for interstitial lung diseases using a deep convolutional neural network.
IEEE Transactions on Medical Imaging.
2016;
35
(5):1207–1216. doi: 10.1109/TMI.2016.2535865.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
Shen W, Zhou M, Yang F, et al Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification.
Pattern Recognition.
2017;
61
:663–673. doi: 10.1016/j.patcog.2016.05.029.
[
CrossRef
]
[
Google Scholar
]
39.
Esteva A, Kuprel B, Novoa R A, et al Dermatologist-level classification of skin cancer with deep neural networks.
Nature.
2017;
542
(7639):115–118. doi: 10.1038/nature21056.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
Mohsen H, El-Dahshan E S A, El-Horbaty E S M, et al Classification using deep learning neural networks for brain tumors.
Future Computing and Informatics Journal.
2018;
3
(1):68–71. doi: 10.1016/j.fcij.2017.12.001.
[
CrossRef
]
[
Google Scholar
]
41.
Xie Y, Zhang J, Xia Y, et al Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT.
Information Fusion.
2018;
42
:102–110. doi: 10.1016/j.inffus.2017.10.005.
[
CrossRef
]
[
Google Scholar
]
42.
Mao C, Yao L, Luo Y. ImageGCN: Multi-relational image graph convolutional networks for disease identification with chest X-rays. arXiv preprint arXiv, 2019: 1904.00325.
43.
鉏家欢, 潘乔 融合图像和指标的阿尔茨海默病多分类诊断模型
智能计算机与应用
2019;(4):6–12. doi: 10.3969/j.issn.2095-2163.2019.04.003.
[
CrossRef
]
[
Google Scholar
]
44.
刘振宇, 宋建聪 基于深度学习的白内障自动诊断方法研究
微处理机
2019;(3):48–52. doi: 10.3969/j.issn.1002-2279.2019.03.012.
[
CrossRef
]
[
Google Scholar
]
45.
Acharya U R, Fujita H, Oh S L, et al Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals.
Information Sciences.
2017;
415
:190–198.
[
Google Scholar
]
46.
李岭海 基于深度学习的心脏病检测的研究
现代计算机
2017;(9):91–93, 110. doi: 10.3969/j.issn.1007-1423.2017.09.021.
[
CrossRef
]
[
Google Scholar
]
47.
Acharya U R, Oh S L, Hagiwara Y, et al Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.
Computers in Biology and Medicine.
2018;
100
:270–278. doi: 10.1016/j.compbiomed.2017.09.017.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
48.
Quang D, Xie X DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences.
Nucleic Acids Research.
2016;
44
(11):e107–e107. doi: 10.1093/nar/gkw226.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
49.
Pan X, Rijnbeek P, Yan J, et al Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
BMC Genomics.
2018;
19
(1):511. doi: 10.1186/s12864-018-4889-1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
50.
Liu Q, Xia F, Yin Q, et al Chromatin accessibility prediction via a hybrid deep convolutional neural network.
Bioinformatics.
2018;
34
(5):732–738. doi: 10.1093/bioinformatics/btx679.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
51.
李洪顺, 于华, 宫秀军 一种只利用序列信息预测 RNA 结合蛋白的深度学习模型
计算机研究与发展
2018;
55
(1):93–101. doi: 10.7544/issn1000-1239.2018.20160508.
[
CrossRef
]
[
Google Scholar
]
52.
Rossi E, Monti F, Bronstein M, et al. ncRNA classification with graph convolutional networks. arXiv preprint arXiv, 2019: 1905.06515.