添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

DLPack构建跨框架的深度学习编译器

Tensorflow,PyTorch和ApacheMxNet等深度学习框架提供了一个功能强大的工具包,可用于快速进行原型设计和部署深度学习模型。易用性通常是以碎片为代价的:孤立地使用每个框架是很容易的。垂直集成已使常见用例的开发流程简化了,但是冒险走过的路可能很棘手。

一个支持不佳的方案是将张量 直接 从一个框架传递到内存中的另一个框架,而没有任何数据重复或复制。支持这种用例使用户能够将管道串联在一起,其中某些算子在一个框架中得到比在另一个框架中得到更好的支持(或更快速)。框架之间共享的数据表示形式也将弥合这一差距,并在为算子生成代码时,允许编译器堆栈以单一格式为目标。

DLPack 是用于张量数据结构的中间内存表示标准。使用DLPack作为通用表示,传统上只能依赖供应商提供的库的框架编写的脚本中利用TVM。TVM打包函数可以在DLPack张量上运行,提供包装程序以桥接 带有零数据副本的 框架(例如PyTorch和MxNet)中的张量数据结构。

DLPack提供了一种简单的可移植内存数据结构:

 * \brief Plain C Tensor object, does not manage memory.
typedef struct {
   * \brief The opaque data pointer points to the allocated data.
   *  This will be CUDA device pointer or cl_mem handle in OpenCL.
   *  This pointer is always aligns to 256 bytes as in CUDA.
  void* data;
  /*! \brief The device context of the tensor */
  DLContext ctx;
  /*! \brief Number of dimensions */
  int ndim;
  /*! \brief The data type of the pointer*/
  DLDataType dtype;
  /*! \brief The shape of the tensor */
  int64_t* shape;
   * \brief strides of the tensor,
   *  can be NULL, indicating tensor is compact.
  int64_t* strides;
  /*! \brief The offset in bytes to the beginning pointer to data */
  uint64_t byte_offset;
} DLTensor;

例如,在TVM中声明并编译一个矩阵乘法算子,并构建一个使用DLPack表示形式的包装器wrapper,允许该算子支持PyTorch张量。还使用MxNet重复此演示。此扩展使机器学习开发人员可以在不牺牲性能的情况下,将代码快速移植到相对不受支持的硬件平台上。

DLPack如何提供框架和TVM之间共享的中间包wrapper的说明:

首先,在PyTorch中计算参考输出:

    import torch
    x = torch.rand(56,56)
    y = torch.rand(56,56)
    z = x.mm(y)

然后,使用默认调度定义并构建TVM矩阵乘法算子:

    n = tvm.convert(56)
    X = tvm.placeholder((n,n), name='X')
    Y = tvm.placeholder((n,n), name='Y')
    k = tvm.reduce_axis((0, n), name='k')
    Z = tvm.compute((n,n), lambda i,j : tvm.sum(X[i,k]*Y[k,j], axis=k))
    s = tvm.create_schedule(Z.op)
    fmm = tvm.build(s, [X, Y, Z], target_host='llvm', name='fmm')

为简便起见,没有涵盖可用于优化矩阵乘法的TVM大量的调度原语集合。如果希望使自定义GEMM算子在的硬件设备上 快速 运行,请参考详细的教程。

然后,将TVM函数转换为支持PyTorch张量的函数:

    from tvm.contrib.dlpack import to_pytorch_func
    # fmm is the previously built TVM function (Python function)
    # fmm is the wrapped TVM function (Python function)
    fmm_pytorch = to_pytorch_func(fmm)
    z2 = torch.empty(56,56)
    fmm_pytorch(x, y, z2)
    np.testing.assert_allclose(z.numpy(), z2.numpy())

并验证结果是否匹配。

可以重复相同的示例,但是使用MxNet代替:

    import mxnet
    from tvm.contrib.mxnet import to_mxnet_func
    ctx = mxnet.cpu(0)
    x = mxnet.nd.uniform(shape=(56,56), ctx=ctx)
    y = mxnet.nd.uniform(shape=(56,56), ctx=ctx)
    z = mxnet.nd.empty(shape=(56,56), ctx=ctx)
    f = tvm.build(s, [X, Y, Z], target_host='llvm', name='f')
    f_mxnet = to_mxnet_func(f)
    f_mxnet(x, y, z)
    np.testing.assert_allclose(z.asnumpy(), x.asnumpy().dot(y.asnumpy()))

在PyTorch示例的幕后

由于TVM提供了将dlpack张量转换为tvm的 功能 NDArray 反之亦然,因此,通过wrapper功能,所需的只是一些语法 syntactic sugar 。 convert_func 是用于使用具有dlpack支持的张量的框架的通用转换器,可以用于实现方便的转换器,例如 to_pytorch_func

def convert_func(tvm_func, tensor_type, to_dlpack_func):
    assert callable(tvm_func)
    def _wrapper(*args):
        args = tuple(ndarray.from_dlpack(to_dlpack_func(arg))\
            if isinstance(arg, tensor_type) else arg for arg in args)
        return tvm_func(*args)
    return _wrapper
def to_pytorch_func(tvm_func):
    import torch
    import torch.utils.dlpack
    return convert_func(tvm_func, torch.Tensor, torch.utils.dlpack.to_dlpack)
人工智能芯片与自动驾驶