添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

数据分析的工作,80%的时间耗费在处理数据上,而数据处理的主要过程可以分为:分离-操作-结合(Split-Apply-Combine),也就是说,首先,把数据根据特定的字段分组,每个分组都是独立的;然后,对每个分组按照业务需求执行转换;最后,把转换后的结果组合在一起。在数据处理中,经常需要循环访问数据,R语言是矢量化的,天生具有处理循环操作的优势。

使用ggplot2包中的diamonds数据集做为示例数据

> install.packages('ggplot2')
> library(ggplot2)
> data("diamonds")

data()函数的作用是加载指定的数据集,本例将加载ggplot2包中的diamonds数据集,这个数据集在下文直接引用。

一,使用aggregate()函数做数据变换

在研究数据时,有时需要对数据按照特定的字段进行分组,然后统计各个分组的数据,这就是SQL语法中的分组-聚合操作,使用aggregate()函数对数据进行简单的数据处理。

aggregate()函数用于把数据分离为单独的子集,为每一个子集计算聚合值,然后把聚合值结合(combine)在一起返回。

aggregate(formula, data, FUN, ...,subset, na.action = na.omit)

参数注释:

  • formula:指定formula对象,包括符号“ ~”,以及在符号“~”两侧的变量,左侧代表要计算聚合值的变量(聚合变量),右侧代表分组的变量,例如,price~cut,函数依据分组变量,把数据分离为多个单独的子集。
  • data:指定操作的数据框;
  • FUN:该参数用于指定函数,该函数应用在符号“~”左侧的变量;
  • ...:指定传递给FUN函数的其他参数;
  • subset:向量类型,可选参数,用于指定data的观测子集;
  • na.action: 如何处理缺失值,默认为忽略NA。如果不选择na.omit,则需指定函数去处理NA。
  • 1,单个分组变量

    使用aggregate() 函数操作diamonds数据集,按照cut字段分组,函数mean的作用是为每个分组计算prince的平均值:

    aggregate(price~cut,diamonds,mean)

    2,多个分组变量

    aggregate()函数能够添加多个分组变量,只需要在formula右侧添加变量,并用加号“+”隔离:

    > aggregate(price~cut+color,diamonds,mean)
             cut color    price
    1       Fair     D 4291.061
    2       Good     D 3405.382
    3  Very Good     D 3470.467
    

    3,多个聚合变量

    aggregate()函数能够添加多个聚合变量,只需要在formula左侧,使用函数cbind()把两个变量组合起来:

    > aggregate(cbind(price,carat)~cut,diamonds,mean)
            cut    price     carat
    1      Fair 4358.758 1.0461366
    2      Good 3928.864 0.8491847
    3 Very Good 3981.760 0.8063814
    4   Premium 4584.258 0.8919549
    5     Ideal 3457.542 0.7028370

    4,多个分组变量和多个聚合变量

    aggregate()函数能够formular对象的两侧分别添加多个变量,按照多个分组变量和多个聚合变量执行聚合运算

    > aggregate(cbind(price,carat)~cut+color,diamonds,mean)
             cut color    price     carat
    1       Fair     D 4291.061 0.9201227
    2       Good     D 3405.382 0.7445166
    

    R中计数比较特殊,plyr包中有一个计算函数count(),参数vars定义分组的变量,该函数会把重复值计算N次:

    count(df, vars = NULL)

    使用aggregate()来实现分组计数,使用length(x)来计算向量中元素的个数,该函数会把重复值计算N次:

    aggregate(cut~color,diamonds,length)

    为了计算唯一值的数量,可以使用unique(x),在计数之前,对向量元素去重:

    aggregate(cut~color,diamonds,function(x) length(unique(x)))

    三,数据变换(dplyr包)

    dplyr包提供灵活的数据操作,用于对数据框执行转化和重塑,这个包是plyr包的升级版本,侧重于处理数据框对象,因此其名字带d(data frame),dplyr包是R开发人员必学必会的包。

    dplyr包有三个主要的目标:

  •  更加灵活和简单地处理数据框;
  • 使用内存,提高数据处理的性能;
  • 使用相同的接口处理数据,无论数据存储在何处,无论是在数据框中,数据表或数据库。
  • 1,tlb类型
    dplyr包不是默认安装的包,在使用之前,需要使用以下命令安装和引用dplyr包:
    install.packages("dplyr")
    library(dplyr)

    dplyr包只能用于tibble(简称tbl)类型的对象,tibble 类型是dplyr包特有的对象类型(data frame tbl / tbl_df)。在利用dplyr包处理数据之前,建议把数据框装载成tibble类型,可以调用 tbl_df()函数把数据框类型转化成 tibble 类型的数据对象:

    > df <- tbl_df(diamonds)

    2,投影函数(select)

    从tbl对象中,选择特定的数据列显示,select()函数的第一个参数是tibble对象,后续的参数是tbl对象中的变量名:

    > select(df,carat,cut,color)

    2,筛选函数(filter)

    从tbl对象中,按照特定的条件过滤数据:

    > filter(df,color=='E')

    3,转换函数(mutate)

    根据tbl对象中的数据,应用指定的公式,派生新的数据列,或重写已经存在的数据列:

    > mutate(df,avg_ct=price/carat)

    4,汇总函数(summarize)

    对tbl对象执行聚合运算,如果tbl对象已经被分组,那么单独对每个分组进行聚合运算:

    > summarize(df,avg_prince=mean(price),avg_ct=mean(carat))

    5,分组函数(group_by)和移除分组(ungroup)

    使用group_by()函数对tbl对象执行分组,被分组之后,tbl对象处于分组状态,可以使用ungroup函数,移除tbl对象的分组状态。

    group_by(df,color)

    6,排序函数(arrange)

    arrange()函数对tbl变量进行排序,默认是按照字段的升序值排序,使用desc(field),可以按照字段的降序值排序:

    > arrange(df,color)

    7,管道操作符(%>%)

    管道操作符(%>%)用于把前一步操作的结果集(变量类型是tbl)传递到给函数的第一个参数中,同时函数的第一个参数可以省略,例如:

    > df %>% group_by(color) %>% summarize(mean(price))
    # A tibble: 7 x 2
      color `mean(price)`
      <ord>         <dbl>
    1     D      3169.954
    2     E      3076.752
    3     F      3724.886
    4     G      3999.136
    5     H      4486.669
    6     I      5091.875
    7     J      5323.818

    8,连接操作(join)

    dplyr包还提供了连接(join)操作,

    inner_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
    left_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
    right_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
    full_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)
    semi_join(x, y, by = NULL, copy = FALSE, ...)
    anti_join(x, y, by = NULL, copy = FALSE, ...)

    参数注释:

  • by:设置两个数据集用于匹配的字段名,默认使用全部的同名字段进行匹配,如果两个数据集需要匹配的字段名不同,可以直接用等号指定匹配的字段名,例如, by = c("a" = "b"),表示用x.a和y.b进行匹配。
  • copy:如果两个数据集来自不同的数据源,copy设置为TRUE时,会把数据集y的数据复制到数据集x中,出于性能上的考虑,需要谨慎设置copy参数为TRUE。
  • suffix:合并后的数据集中同名变量,会自动添加suffix中设置的后缀加以区分。
  • 9,集合操作(set)

    #取两个集合的交集
    intersect(x,y, ...)
    #取两个集合的并集,并进行去重
    union(x,y, ...)
    #取两个集合的并集,不去重
    union_all(x,y, ...)
    #取两个集合的差集
    setdiff(x,y, ...)
    #判断两个集合是否相等
    setequal(x, y, ...)

    10,绑定操作

    dplyr包提供了按行/列合并数据集的函数,合并的对象为数据框,也可以是能够转换为数据框的列表。按行合并函数bind_rows()通过列名进行匹配,不匹配的值使用NA替代,类似于base:: rbind()函数。按列合并函数bind_cols()通过行号匹配,因此合并的数据框必须有相同的行数,函数类似于base:: cbind()函数。原数据集行名称会被过滤掉。

    #按行合并,.id添加新列用于指明合并后每条数据来自的源数据框
    bind_rows(...,.id = NULL)
    #按列合并
    bind_cols(...)
    #合并数据集
    combine(...)

    11,排名操作

    row_number(x)
    ntile(x, n)
    min_rank(x)
    dense_rank(x)
    percent_rank(x)
    cume_dist(x)

    例如,对一个向量的元素进行排序:

    x <- c(5, 1, 3, 2, 2, NA)
    row_number(x)

    12,去重

    对数据对象去重

    distinct(data, ..., keep_all = FALSE)

    参数注释:

  • data:tbl对象
  • ... :可选的变量,用于指定去重的变量,如果去重的变量不唯一,那么只保留第一个观测
  • keep_all:设置为TRUE时,所有的变量都保留到.data,如果...的组合不唯一,那么只保留第一行的观测的各个变量值
  • 13,计数

    计数使用函数 n() 来实现,而统计数据集中无重复值的数量使用函数 n_distinct()来实现:

    n_distinct(..., na.rm
    = FALSE)

    统计各个分组的观测数量,只能用于 summarise(), mutate() 和 filter() 中

    carriers <- group_by(flights, carrier)
    summarise(carriers, n())
    mutate(carriers, n = n())
    filter(carriers, n() < 100)

    参考文档:

    【R语言】必学包之dplyr包

    R语言滴水穿石系列文章(一):dplyr-高效的数据变换与整理工具

    R语言扩展包dplyr笔记

    R: 矩阵运算及常用函数 II - aggregate

    作者悦光阴
    本文版权归作者和博客园所有,欢迎转载,但未经作者同意,必须保留此段声明,且在文章页面醒目位置显示原文连接,否则保留追究法律责任的权利。