添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Aug; 50(4): 524–528.
PMCID: PMC8714480

Language: Chinese | English

2019 冠状病毒病疫苗接种相关新发及复发肾小球病研究进展 浙江大学医学院附属儿童医院 国家儿童健康与疾病临床医学研究中心 国家儿童区域医疗中心,浙江 杭州 310052

第一作者:刘 飞,硕士研究生,主要从事儿童肾病综合征、多囊肾的机制研究;E-mail:alexdevin@163.com;https://orcid.org/0000-0001-9098-9155
通信作者:傅海东,主任医师,主要从事儿童肾病综合征的诊疗相关研究;E-mail: moc.361@zhdhf ;https://orcid.org/0000-0001-9459-3078 。截至2021年5月25日,全球范围内共接种1 545 967 545剂COVID-19疫苗

COVID-19疫苗整体保护率为50%~95% ,为阻止病毒传播提供了有效的工具。但人们对接种疫苗后不良反应的担忧一直存在,特别是部分接种者在接种疫苗后出现较为严重的不良反应甚至死亡,加重了人们对COVID-19疫苗安全性的担忧 。近来有文献报道,接种者在接种COVID-19疫苗(主要是mRNA疫苗及灭活疫苗)后发生新发肾小球病或原有肾小球病复发 。本文总结了接种COVID-19疫苗后发生新发肾小球病或原有肾小球病复发病例的特点,分析了可能的发病机制,并对肾脏病患者COVID-19疫苗接种提出了建议。

1COVID-19疫苗接种相关新发和复发肾小球病病例及临床特点

Lebedev等 首先报道了1例50岁男性患者接种Pfizer-BioNTech的mRNA疫苗首剂第3天出现腹痛、呕吐、浮肿等临床症状,实验室检查提示大量蛋白尿、低蛋白血症及血肌酐升高,肾穿刺活体组织检查(活检)结果提示MCD伴急性肾小管损伤,予醋酸泼尼松60 mg/d应用约2周后尿蛋白转阴,肌酐恢复正常。D’Agati等 随后报道了1例77岁男性患者接种Pfizer-BioNTech的mRNA疫苗首剂第7天出现浮肿症状,实验室检查提示大量蛋白尿、低蛋白血症及血肌酐升高,肾穿刺活检结果提示MCD伴急性肾小管损伤,予醋酸泼尼松60 mg/d应用约20 d复查仍有大量蛋白尿,血肌酐仍持续偏高。Maas等 报道了1例80岁男性患者接种Pfizer-BioNTech的mRNA疫苗首剂第7天出现浮肿症状,实验室检查符合肾病综合征表现,肾穿刺活检结果提示MCD,予醋酸泼尼松80 mg/d应用10 d后尿蛋白/肌酐比值下降至0.68 g/g。Holzworth等 报道了1例63岁女性患者接种美国Moderna公司mRNA疫苗首剂7 d内出现浮肿、乏力、呼吸困难等临床症状,辅助检查提示肾病综合征合并急性肾损伤,予甲泼尼龙琥珀酸钠500 mg冲击3 d后改为醋酸泼尼松1 mg·kg –1 ·d –1 口服,结局不详。这4例新发肾病患者均接种mRNA疫苗,平均年龄为67.5岁;起病时间为首剂疫苗接种后第3~7天,3例合并肾功能损害,3例肾穿刺活检结果提示MCD;经激素治疗后,2例患者临床症状迅速缓解,1例结局不详,1例短期疗效不佳,需长期随访观察。

Aydin等 报道了1例66岁原发性膜性肾病女性患者接种北京科兴生物制品有限公司灭活疫苗首剂2周后出现浮肿症状,尿蛋白/肌酐9.42 g/g,血肌酐245.8 μmol/L,后续治疗及转归不详。Kervella等 报道了1例34岁激素依赖性肾病综合征(病理表现为MCD)女性患者接种Pfizer-BioNTech的mRNA疫苗首剂第10天尿蛋白/肌酐2.4 g/g,第2剂数天后尿蛋白/肌酐3.0 g/g,将醋酸泼尼松加量至1 mg·kg –1 ·d –1 后完全缓解。Komaba等 报道了1例65岁肾病综合征(病理表现为MCD)男性患者接种Pfizer-BioNTech的mRNA疫苗首剂第10天出现泡沫尿,尿蛋白/肌酐11.48 g/g,白蛋白28 g/L;予醋酸泼尼松20 mg/d、环孢素100 mg/d治疗2周后尿蛋白转阴。Rahim等 报道了1例52岁IgA肾病女性患者接种Pfizer-BioNTech的mRNA疫苗第2剂24 h内出现肉眼血尿,尿蛋白/肌酐4.2 g/g,继续原血管紧张素转化酶抑制剂治疗1周内自行缓解。Negrea等 报道了2例38岁IgA肾病女性患者接种Pfizer-BioNTech的mRNA疫苗第2剂24 h内出现肉眼血尿,其中1例患者出现尿蛋白定量增加,继续原肾素-血管紧张素-醛固酮系统抑制剂治疗后,2例患者皆在3 d内自行缓解。此6例肾病复发患者中,5例接种mRNA疫苗,1例接种灭活疫苗;复发时间多出现在首剂后1~2周或第2剂接种后24 h内;5例mRNA疫苗接种病例经激素及免疫抑制剂调整后病情缓解,1例灭活疫苗接种病例预后不详。

综上可见,mRNA疫苗和灭活疫苗均可能引起新发及复发肾小球病;发病时间可能在首剂接种后,也可能在第2剂接种后;新发肾小球病多合并急性肾损伤,病理类型以MCD为主;新发病例多对激素敏感,复发病例经药物调整治疗后预后良好,部分可自行缓解。

接种者在疫苗接种后出现新发及复发肾小球病表现,首要问题是疾病与疫苗接种是巧合还是因果关系。临床出现此类病例,判断的依据主要是发病的时间点及排他性的诊断。对于原发病例,如条件允许可考虑行肾穿刺活检,如表现为MCD,可予激素治疗,多可获缓解;对于复发病例,通过调整激素及免疫抑制剂的剂量等,多数亦可快速缓解。

2COVID-19疫苗接种相关新发及复发肾小球病的发病机制

mRNA疫苗引入编码疾病特异性抗原的mRNA,利用宿主细胞的蛋白质合成机制产生抗原,从而触发免疫应答。mRNA疫苗接种后会触发机体的体液免疫和细胞免疫,一方面通过被CD8 + T细胞识别从而诱导细胞介导的免疫反应,另一方面通过被CD4 + T细胞识别促进B细胞产生抗原特异性抗体,进一步促进细胞因子及炎症介质的释放 。前期临床试验也观察到Pfizer-BioNTech的mRNA疫苗会引起强烈的CD4 + 和CD8 + T细胞反应和抗体反应及细胞因子释放 。肾小球病与T细胞、B细胞介导的足细胞损伤密切相关,因此mRNA疫苗介导的体液、细胞免疫反应可能是引起足细胞损伤导致新发及复发肾小球病的原因 。COVID-19灭活疫苗相关肾小球病与流感等其他灭活疫苗引起的MCD有相似之处,也与疫苗引起的免疫反应有关 :灭活疫苗直接引入抗原蛋白,从而刺激宿主免疫应答,引起T细胞、B细胞的反应,最终导致足细胞损伤。既往也有疫苗相关血管炎复发的报道,提示可能与迟发变态反应也有关 。此外,不仅疫苗本身,佐剂也可能触发机体的免疫反应

mRNA疫苗模拟病毒触发人体对感染的免疫应答,对比病毒感染后的自然适应性反应,一般在疫苗接种后早期(2~4 d)就可观察到T细胞激活,细胞内的免疫反应多在感染后1周发生 。故疫苗接种后早期及1周左右可能是新发及复发肾小球病的高发时间,这与已有报道大致吻合。从病理学机制上看,第2剂疫苗的免疫应答更强烈,但已有报道中仅3例是发生在第2剂疫苗接种后,后续需要更深入研究两者之间的联系。接种者的基础情况、激素及免疫抑制剂的用量可能对新发及复发肾小球病均有影响

3免疫相关肾脏病患者COVID-19疫苗接种建议

免疫性疾病患者及应用免疫抑制剂患者在COVID-19疫苗前期临床试验中多被排除在外,但考虑到疫苗诱导抵抗重症COVID-19的免疫潜力超过了可能潜在的风险,欧洲肾脏协会-欧洲透析和移植协会免疫肾脏病工作组建议对所有免疫介导的肾脏病患者进行COVID-19疫苗接种(已知对疫苗成分过敏者除外) 。目前,mRNA疫苗、灭活疫苗、腺病毒载体疫苗均表现出良好的免疫原性及保护力,参照国内特殊人群(慢性肝病、结核病和风湿免疫病患者)COVID-19疫苗接种专家意见 及欧洲肾脏协会的推荐,对于免疫相关肾脏病患者接种COVID-19疫苗有以下几点建议:①建议首选接种灭活疫苗,慎重考虑接种mRNA疫苗、腺病毒载体疫苗、重组亚单位疫苗;②疫苗接种前应咨询专科医生,接种时糖皮质激素应维持在泼尼松等量剂量低于20 mg/d,利妥昔单抗使用后至少间隔6个月以上,其他如甲氨蝶呤、JAK抑制剂、环磷酰胺建议在每一剂疫苗接种后暂停使用1周;③接种后须密切观察基础疾病的病情,监测疾病活动度,应用多种免疫抑制剂、前期有COVID-19相关病毒感染史、高龄者须重点关注;④接种后应继续遵循手卫生、社交距离等防疫要求。

总的来说,COVID-19疫苗仍是终止COVID-19流行的最终希望。根据前期的临床试验结果,COVID-19疫苗整体保护率高、不良反应少,但仍不能忽视可能的严重不良反应及特殊人群的接种反应。在肾脏病领域,后期扩大范围接种时须密切关注有无疾病新发及复发,监测肾脏病患者接种后免疫状态的变化,警惕严重不良反应的发生。采取必要的个体化接种策略(包括合理的接种时机)有助于促进肾脏病患者COVID-19疫苗接种获益。未来希望总结更多病例,探索有肾脏基础疾病患者COVID-19疫苗的个体化接种策略,以及COVID-19疫苗接种与新发和复发肾小球病的深层次关系。

Funding Statement

浙江省重点研发计划(2019C03028)

COMPETING INTERESTS

所有作者均声明不存在利益冲突

References

1. LI Y, TENCHOV R, SMOOT J, et al. A comprehensive review of the global efforts on COVID-19 vaccine development[J] ACS Cent Sci . . 2021; 7 (4):512–533. doi: 10.1021/acscentsci.1c00120. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines[EB/OL]. [2021-05-25]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
3. CARNEIRO D C, SOUSA J D, MONTEIRO-CUNHA J P. The COVID-19 vaccine development: a pandemic paradigm[J] Virus Res . . 2021; 301 :198454. doi: 10.1016/j.virusres.2021.198454. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. SCHULTZ N H, SØRVOLL I H, MICHELSEN A E, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination[J] N Engl J Med . . 2021; 384 (22):2124–2130. doi: 10.1056/NEJMoa2104882. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. BOZKURT B, KAMAT I, HOTEZ P J. Myocarditis with COVID-19 mRNA vaccines[J] Circulation . . 2021; 144 (6):471–484. doi: 10.1161/CIRCULATIONAHA.121.056135. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. CASTELLS M C, PHILLIPS E J. Maintaining safety with SARS-CoV-2 vaccines[J] N Engl J Med . . 2021; 384 (7):643–649. doi: 10.1056/NEJMra2035343. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. FORMEISTER E J, CHIEN W, AGRAWAL Y, et al. Preliminary analysis of association between COVID-19 vaccination and sudden hearing loss using US centers for disease control and prevention vaccine adverse events reporting system data[J] JAMA Otolaryngol Head Neck Surg . . 2021; 147 (7):674–676. doi: 10.1001/jamaoto.2021.0869. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. LEBEDEV L, SAPOJNIKOV M, WECHSLER A, et al. Minimal change disease following the Pfizer-BioNTech COVID-19 vaccine[J] Am J Kidney Dis . . 2021; 78 (1):142–145. doi: 10.1053/j.ajkd.2021.03.010. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. D’AGATI V D, KUDOSE S, BOMBACK A S, et al. Minimal change disease and acute kidney injury following the Pfizer-BioNTech COVID-19 vaccine[J] Kidney Int . . 2021; 100 (2):461–463. doi: 10.1016/j.kint.2021.04.035. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. MAAS R J, GIANOTTEN S, VAN DER MEIJDEN W A G. An additional case of minimal change disease following the Pfizer-BioNTech COVID-19 vaccine[J] Am J Kidney Dis . . 2021; 78 (2):312. doi: 10.1053/j.ajkd.2021.05.003. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. HOLZWORTH A, COUCHOT P, CRUZ-KNIGHT W, et al. Minimal change disease following the moderna mRNA-1273 SARS-CoV-2 vaccine[J] Kidney Int . . 2021; 100 (2):463–464. doi: 10.1016/j.kint.2021.05.007. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. AYDıN M F, YıLDıZ A, ORUÇ A, et al. Relapse of primary membranous nephropathy after inactivated SARS-CoV-2 virus vaccination[J] Kidney Int . . 2021; 100 (2):464–465. doi: 10.1016/j.kint.2021.05.001. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. KERVELLA D, JACQUEMONT L, CHAPELET-DEBOUT A, et al. Minimal change disease relapse following SARS-CoV-2 mRNA vaccine[J] Kidney Int . . 2021; 100 (2):457–458. doi: 10.1016/j.kint.2021.04.033. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. KOMABA H, WADA T, FUKAGAWA M. Relapse of minimal change disease following the Pfizer-BioNTech COVID-19 vaccine[J] Am J Kidney Dis . . 2021; 78 (3):469–470. doi: 10.1053/j.ajkd.2021.05.006. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. RAHIM S E G, LIN J T, WANG J C. A case of gross hematuria and IgA nephropathy flare-up following SARS-CoV-2 vaccination[J] Kidney Int . . 2021; 100 (1):238. doi: 10.1016/j.kint.2021.04.024. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. NEGREA L, ROVIN B H. Gross hematuria following vaccination for severe acute respiratory syndrome coronavirus 2 in 2 patients with IgA nephropathy[J] Kidney Int . . 2021; 99 (6):1487. doi: 10.1016/j.kint.2021.03.002. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. XU S, YANG K, LI R, et al. mRNA vaccine era—mechanisms, drug platform and clinical prospection[J] Int J Mol Sci . . 2020; 21 (18):6582. doi: 10.3390/ijms21186582. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. SAHIN U, MUIK A, DERHOVANESSIAN E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses[J] Nature . . 2020; 586 (7830):594–599. doi: 10.1038/s41586-020-2814-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. VIVARELLI M, MASSELLA L, RUGGIERO B, et al. Minimal change disease[J]. Clin J Am Soc Nephrol , 2017, 12(2): 332-345 [ PMC free article ] [ PubMed ]
20. KIELSTEIN J T, TERMÜHLEN L, SOHN J, et al. Minimal change nephrotic syndrome in a 65-year-old patient following influenza vaccination[J]. Clin Nephrol , 2000, 54(3): 246-248 [ PubMed ]
21. GUTIERREZ S, DOTTO B, PETITI J P, et al. Minimal change disease following influenza vaccination and acute renal failure: just a coincidence?[J]. Nefrologia , 2012, 32(3): 414-415 [ PubMed ]
22. LAMBERT E M, LIEBLING A, GLUSAC E, et al. Henoch-schonlein purpura following a meningococcalvaccine[J/OL] Pediatrics . . 2003; 112 (6):e491–e494. doi: 10.1542/peds.112.6.e491. [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. MCNALLY A, MCGREGOR D, SEARLE M, et al. Henoch-Schonlein purpura in a renal transplant recipient with prior IgA nephropathy following influenza vaccination[J] Clin Kidney J . . 2013; 6 (3):313–315. doi: 10.1093/ckj/sft029. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. SEGAL Y, SHOENFELD Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction[J] Cell Mol Immunol . . 2018; 15 (6):586–594. doi: 10.1038/cmi.2017.151. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. SETTE A, CROTTY S. Adaptive immunity to SARS-CoV-2 and COVID-19[J] Cell . . 2021; 184 (4):861–880. doi: 10.1016/j.cell.2021.01.007. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. SOY M, KESER G, ATAGUNDUZ P, et al. A practical approach for vaccinations including COVID-19 in autoimmune/autoinflammatory rheumatic diseases: a non-systematic review[J] Clin Rheumatol . . 2021; 40 (9):3533–3545. doi: 10.1007/s10067-021-05700-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. DAL-RÉ R, BEKKER L G, GLUUD C, et al. Ongoing and future COVID-19 vaccine clinical trials: challenges and opportunities[J] Lancet Infect Dis . . 2021 doi: 10.1016/S1473-3099(21)00263-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. KRONBICHLER A, ANDERS H J, FERNANDEZ-JUÁREZ G M, et al. Recommendations for the use of COVID-19 vaccines in patients with immune-mediated kidney diseases[J] Nephrol Dial Transplant . . 2021; 36 (7):1160–1168. doi: 10.1093/ndt/gfab064. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. 中华医学会感染病学分会, 中华医学会风湿病学分会. 特殊人群(慢性肝病、结核病和风湿免疫病患者)新型冠状病毒疫苗接种专家建议[J]. 中华传染病杂志 , 2021, 39(7): 398-403 Chinese Society of Infectious Diseases, Chinese Society of Rheumatology. Expert recommendation on severe acute respiratory syndrome coronavirus 2 vaccination in patients with chronic liver diseases, tuberculosis or rheumatoid diseases[J]. Chinese Journal of Infectious Diseases , 2021, 39(7): 398-403. (in Chinese)

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press