currentPath = pwd; % 获得当前的工作目录
imdsTrain = imageDatastore(fullfile(pwd,'train_images'),...
'IncludeSubfolders',true,...
'LabelSource','foldernames'); % 载入图片集合
%% 2 对训练集中的每张图像进行hog特征提取,测试图像一样
% 预处理图像,主要是得到features特征大小,此大小与图像大小和Hog特征参数相关
imageSize = [256,256];% 对所有图像进行此尺寸的缩放
I = readimage(imdsTrain,1);
I = imresize(I,imageSize);
I = rgb2gray(I);
lbpFeatures = extractLBPFeatures(I,'CellSize',[16 16],'Normalization','None');
numNeighbors = 8;
% Upright = false;
numBins = numNeighbors*(numNeighbors-1)+3; % numNeighbors+2;
lbpCellHists = reshape(lbpFeatures,numBins,[]);
lbpCellHists = bsxfun(@rdivide,lbpCellHists,sum(lbpCellHists));
lbpFeatures = reshape(lbpCellHists,1,[]);
% 提示信息
disp('开始训练数据...');
% 对所有训练图像进行特征提取
numImages = length(imdsTrain.Files);
featuresTrain = zeros(numImages,size(lbpFeatures,2),'single'); % featuresTrain为单精度
for i = 1:numImages
imageTrain = readimage(imdsTrain,i);
imageTrain = imresize(imageTrain,imageSize);
I = rgb2gray(imageTrain);
lbpFeatures = extractLBPFeatures(I,'CellSize',[16 16],'Normalization','None');
% numNeighbors = 8;
% numBins = numNeighbors*(numNeighbors-1)+3;
lbpCellHists = reshape(lbpFeatures,numBins,[]);
lbpCellHists = bsxfun(@rdivide,lbpCellHists,sum(lbpCellHists));
lbpFeatures = reshape(lbpCellHists,1,[]);
featuresTrain(i,:) = lbpFeatures;
% 所有训练图像标签
trainLabels = imdsTrain.Labels;
% 开始svm多分类训练,注意:fitcsvm用于二分类,fitcecoc用于多分类,1 VS 1方法
classifer = fitcecoc(featuresTrain,trainLabels);
save classifer
% 提示信息
disp('训练阶段结束!!!');
2)测试部分代码:
classify.m
%% 该函数用来对图片进项分类 LBP + SVM
%% 1.读入待分类的图片集合
currentPath = pwd;
imdsTest = imageDatastore(fullfile(pwd,'test_image'));
%% 2.分类,预测并显示预测效果图
% 载入分类器
load classifer
correctCount = 0;
%% 预测并显示预测效果图
numTest = length(imdsTest.Files);
for i = 1:numTest
testImage = readimage(imdsTest,i); % imdsTest.readimage(1)
scaleTestImage = imresize(testImage,imageSize);
I = rgb2gray(scaleTestImage);
lbpFeatures = extractLBPFeatures(I,'CellSize',[16 16],'Normalization','None');
numNeighbors = 8;
numBins = numNeighbors*(numNeighbors-1)+3;
lbpCellHists = reshape(lbpFeatures,numBins,[]);
lbpCellHists = bsxfun(@rdivide,lbpCellHists,sum(lbpCellHists));
featureTest = reshape(lbpCellHists,1,[]);
[predictIndex,score] = predict(classifer,featureTest);
figure;imshow(imresize(testImage,[256,256]));
imgName = imdsTest.Files(i);
tt = regexp(imgName,'\','split');
cellLength = cellfun('length',tt);
tt2 = char(tt{1}(1,cellLength));
% 统计正确率
if strfind(tt2,char(predictIndex))==1
correctCount = correctCount+1;
title(['分类结果: ',tt2,'--',char(predictIndex)]);
fprintf('%s == %s \n',tt2,char(predictIndex));
% 显示正确率
fprintf('分类结束,正确了为:%.1f%%\n',correctCount * 100.0 / numTest);