添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

1.文档编写目的

继上一章讲述 如何在CDH集群安装Anaconda&搭建Python私有源 后,本章节主要讲述如何使用Pyton Impyla客户端连接CDH集群的HiveServer2和Impala Daemon,并进行SQL操作。

1.依赖包安装

2.代码编写

3.代码测试

1.CM和CDH版本为5.11.2

2.RedHat7.2

1.CDH集群环境正常运行

2.Anaconda已安装并配置环境变量

3.pip工具能够正常安装Python包

4.Python版本2.6+ or 3.3+

5.非安全集群环境

2.Impyla依赖包安装

Impyla所依赖的Python包

  • bit_array
  • thrift (on Python 2.x) orthriftpy (on Python 3.x)
  • thrift_sasl
  • 1.首先安装Impyla依赖的Python包

    [root@ip-172-31-22-86 ~]# pip install bit_array
    [root@ip-172-31-22-86 ~]# pip install thrift==0.9.3
    [root@ip-172-31-22-86 ~]# pip install six
    [root@ip-172-31-22-86 ~]# pip install thrift_sasl
    [root@ip-172-31-22-86 ~]# pip install sasl

    注意:thrift的版本必须使用0.9.3,默认安装的为0.10.0版本,需要卸载后重新安装0.9.3版本,卸载命令pip uninstall thrift

    2.安装Impyla包

    impyla版本,默认安装的是0.14.0,需要将卸载后安装0.13.8版本

     [root@ip-172-31-22-86 ec2-user]# pip install impyla==0.13.8
    Collecting impyla
      Downloading impyla-0.14.0.tar.gz (151kB)
        100% |████████████████████████████████| 153kB 1.0MB/s 
    Requirement already satisfied: six in /opt/cloudera/parcels/Anaconda-4.2.0/lib/python2.7/site-packages (from impyla)
    Requirement already satisfied: bitarray in /opt/cloudera/parcels/Anaconda-4.2.0/lib/python2.7/site-packages (from impyla)
    Requirement already satisfied: thrift in /opt/cloudera/parcels/Anaconda-4.2.0/lib/python2.7/site-packages (from impyla)
    Building wheels for collected packages: impyla
      Running setup.py bdist_wheel for impyla ... done
      Stored in directory: /root/.cache/pip/wheels/96/fa/d8/40e676f3cead7ec45f20ac43eb373edc471348ac5cb485d6f5
    Successfully built impyla
    Installing collected packages: impyla
    Successfully installed impyla-0.14.0

    3.编写Python代码

    Python连接Hive(HiveTest.py)

    from impala.dbapi import connect

    conn = connect(host= 'ip-172-31-21-45.ap-southeast-1.compute.internal' ,port= 10000 ,database= 'default' ,auth_mechan

    ism= 'PLAIN' )

    print (conn)

    cursor = conn.cursor()

    cursor.execute( 'show databases' )

    print cursor.description # prints the result set's schema

    results = cursor.fetchall()

    print (results)

    cursor.execute( 'SELECT * FROM test limit 10' )

    print cursor.description # prints the result set's schema

    results = cursor.fetchall()

    print (results)

    Python连接Impala(ImpalaTest.py)

    from impala.dbapi import connect

    conn = connect(host= 'ip-172-31-26-80.ap-southeast-1.compute.internal' ,port= 21050 )

    print (conn)

    cursor = conn.cursor()

    cursor.execute( 'show databases' )

    print cursor.description # prints the result set's schema

    results = cursor.fetchall()

    print (results)

    cursor.execute( 'SELECT * FROM test limit 10' )

    print cursor.description # prints the result set's schema

    results = cursor.fetchall()

    print (results)

    4.测试代码

    在shell命令行执行Python代码测试

    1.测试连接Hive

    _root@ip-172-31-22-86_ec2-user# python HiveTest.py

    ( 'database_name' , 'STRING' , None, None, None, None, None)

    ( 'default' ,)

    ( 'test.s1' , 'STRING' ,None, None, None, None, None), ( 'test.s2' , 'STRING' , None, None, None, None, None)

    ( 'name1' , 'age1' ), ( 'name2' , 'age2' ), ( 'name3' , 'age3' ), ( 'name4' , 'age4' ), ( 'name5' , 'age5' ), ( 'name6' , 'age6' ), ( 'name7' , 'age7' ), ( 'name8' , 'age8' ), ( 'name9' , 'age9' ), ( 'name10' , 'age10' )

    [root@ip-172-31-22-86 ec2-user]#

    2.测试连接Impala

    _root@ip-172-31-22-86_ec2-user# python ImpalaTest.py

    ( 'name' , 'STRING' , None, None, None, None, None), ( 'comment' , 'STRING' , None, None, None, None, None)

    ( '_impala_builtins' , 'Systemdatabase for Impala builtin functions' ), ( 'default' , 'Default Hive database' )

    ( 's1' , 'STRING' , None, None, None,None, None), ( 's2' , 'STRING' , None, None, None,None, None)

    ( 'name1' , 'age1' ), ( 'name2' , 'age2' ), ( 'name3' , 'age3' ), ( 'name4' , 'age4' ), ( 'name5' , 'age5' ), ( 'name6' , 'age6' ), ( 'name7' , 'age7' ), ( 'name8' , 'age8' ), ( 'name9' , 'age9' ), ( 'name10' , 'age10' )

    [root@ip-172-31-22-86 ec2-user]#

    5.常见问题

    1.错误一

    building 'sasl.saslwrapper' extension
        creating build/temp.linux-x86_64-2.7
        creating build/temp.linux-x86_64-2.7/sasl
        gcc -pthread -fno-strict-aliasing -g -O2 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -Isasl -I/opt/cloudera/parcels/Anaconda/include/python2.7 -c sasl/saslwrapper.cpp -o build/temp.linux-x86_64-2.7/sasl/saslwrapper.o
        unable to execute 'gcc': No such file or directory
        error: command 'gcc' failed with exit status 1
        ----------------------------------------
    Command "/opt/cloudera/parcels/Anaconda/bin/python -u -c "import setuptools, tokenize;__file__='/tmp/pip-build-kD6tvP/sasl/setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" install --record /tmp/pip-WJFNeG-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-kD6tvP/sasl/

    解决方法:

    [root@ip-172-31-22-86 ec2-user]# yum -y install gcc 
    [root@ip-172-31-22-86 ec2-user]# yum install gcc-c++ 

    2.错误二

    gcc -pthread -fno-strict-aliasing -g -O2 -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -Isasl -I/opt/cloudera/parcels/Anaconda/include/python2.7 -c sasl/saslwrapper.cpp -o build/temp.linux-x86_64-2.7/sasl/saslwrapper.o
    cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ [enabled by default]
    In file included from sasl/saslwrapper.cpp:254:0:
    sasl/saslwrapper.h:22:23: fatal error: sasl/sasl.h: No such file or directory
    #include <sasl/sasl.h>
    compilation terminated.
    error: command 'gcc' failed with exit status 1

    解决方法:

    [root@ip-172-31-22-86 ec2-user]# yum -y install python-devel.x86_64 cyrus-sasl-devel.x86_64

    醉酒鞭名马,少年多浮夸! 岭南浣溪沙,呕吐酒肆下!挚友不肯放,数据玩的花!
    温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。

    推荐关注Hadoop实操,第一时间,分享更多Hadoop干货,欢迎转发和分享。

    原创文章,欢迎转载,转载请注明:转载自微信公众号Hadoop实操

    HStreamDB Newsletter 2022-06|新集群机制、可视化监控、Python 客户端发布…
    本月,HStreamDB 团队专注于 v0.9 的开发工作,完成了 HServer 去中心化集群的切换、HStream IO Embedded Runtime 和 CDC Source Connector 的开发, 并发布了首个可用的 Python 客户端。