添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
风流的板栗  ·  VPF:适用于 Python ...·  1 年前    · 
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer 山东大学齐鲁医院血液科,济南 250012, Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China P 1 值<0.0010.012 P 2 值1.0000.966

注: P 1 :重复突变与缺失突变比较; P 2 :替换突变与缺失突变比较

Alphafold2预测三种碱基突变类型的ASXL1蛋白结构图

A:碱基缺失突变(c.1888_1910del:p.H630fs);B:碱基重复突变(c.1927dupG,p.G642fs);C:碱基替换突变(c.C3692T:p.S1231F)

本研究中ASXL1突变的中位VAF为35.72%(1.07%~66.02%)。将患者根据VAF值分为<20%、20%~40%和≥40% 三组,结果显示三组间外周血原始幼稚细胞比例差异有统计学意义( P =0.037),其中高VAF组中位外周血原始幼稚细胞比例高于低VAF组(47.38%对21.21%, P =0.029),其余临床及实验室指标差异均无统计学意义( P 值均>0.05)。相关性分析结果显示,VAF值与初诊时年龄呈正相关( P =0.043, r =0.238);与外周血原始幼稚细胞比例也呈正相关( P =0.019, r =0.301)。

将47例ASXL1 + 患者分为ASXL1单基因突变组和复合基因突变(≥2个基因突变,含ASXL1)组,比较两组临床及实验室指标,ASXL1单基因突变组骨髓原始细胞及异常细胞占有核细胞比例均高于复合基因突变组( P 值分别为0.021和0.022)( 表3 )。37例复合基因突变患者突变情况见 图2 ,进一步对基因突变的相关性分析,结果显示ASXL1突变常与IDH2( P =0.018, r =0.34)突变同时发生。

表3

ASXL1单基因突变与复合基因突变(含ASXL1基因)患者临床特征比较
临床特征 单基因突变组(10例) 复合基因突变组(37例) 统计量 P
年龄[岁, M (范围)] 51(14~76) 59(18~85) z =−1.940 0.052
性别(例,男/女) 6/4 22/15 χ 2 =0.000 1.000
WBC[×10 9 /L, M (范围)] 1.85(0.83~75.98) 5.8(0.59~271.47) z =−1.495 0.135
HGB[g/L, M (范围)] 76(21~132) 68(46~135) z =−0.208 0.835
PLT[×10 9 /L, M (范围)] 58(9~225) 39(2~298) z =−1.092 0.275
外周血原始幼稚细胞比例[%, M (范围)] 11(0~86) 26(0~89) z =−0.067 0.947
骨髓原始细胞比例[%, M (范围)] 69(0~95) 41(1~93) z =−2.314 0.021
异常细胞占有核细胞比例[%, M (范围)] 85(22~88) 24(5~71) z =−2.287 0.022
An external file that holds a picture, illustration, etc. Object name is cjh-43-10-833-g002.jpg
37例复合基因突变急性髓系白血病患者(≥2个基因突变,含ASXL1)的突变分布情况

CR:完全缓解;NR:未缓解

4. ASXL1突变患者的生存分析:231例未失访患者中,ASXL1 + 和ASXL1 患者中位OS时间分别为10(95% CI 1.38~18.62)个月和20(95% CI 14.54~25.47)个月( P =0.012),中位PFS时间分别为10(95% CI 4.68~15.32)个月和 17(95% CI 13.43~20.57)个月( P =0.002),前者明显短于后者( 图3 )。老年组中,ASXL1 + 与ASXL1 患者中位OS时间差异无统计学意义[6(95% CI 1.73~10.27)个月对11(95% CI 4.30~17.70)个月, P =0.306],而ASXL1 + 患者中位PFS时间为5(95% CI 0.84~9.16)个月,明显短于ASXL1 患者的9(95% CI 1.36~16.65)个月( P =0.029)。中年组中,ASXL1 + 患者的中位OS和PFS时间均显著短于ASXL1 患者[OS时间:11(95% CI 0.61~21.40)个月对19(95% CI 13.58~24.42)个月, P =0.033;PFS时间:10(95% CI 9.05~22.47)个月对16(95% CI 11.22~20.78)个月, P =0.047]。青年组中,ASXL1 + 与ASXL1 患者间中位OS和PFS时间差异均无统计学意义[OS时间:28(95% CI 1.84~54.16)个月对37(95% CI 26.50~47.50)个月, P =0.620;PFS时间:28(95% CI 1.84~54.16)个月对36(95% CI 25.05~46.14)个月, P =0.520]。

ASXL1 + 与ASXL1 急性髓系白血病患者总生存(A)和无进展生存(B)的比较

5. 预后影响因素分析:将性别、年龄、初诊时WBC、HGB、PLT、VAF、骨髓原始细胞比例、外周血原始幼稚细胞比例、异常细胞占有核细胞比例、复杂核型以及可能影响预后的基因突变等因素采用Cox比例风险回归模型的方法进行单因素预后分析( 表4 ),进一步将 P <0.05的因素纳入Cox多因素分析,结果表明异常细胞占有核细胞比例≥20%( HR =2.678,95% CI 1.167~6.186, P =0.020)、复杂核型( HR =6.824,95% CI 1.180~39.458, P =0.032)和TET2突变( HR =2.441,95% CI 1.037~5.747, P =0.041)均为影响ASXL1 + 患者OS的独立危险因素( 表4 )。

表4

影响ASXL1突变急性髓系白血病患者总生存的单因素及多因素分析
临床特征 95% CI P
单因素分析
年龄(≥60岁/<60岁) 1.676 0.866~3.242 0.125
性别(男/女) 0.902 0.430~1.894 0.785
WBC(≥50×10 9 /L/<50×10 9 /L) 0.539 0.219~1.326 0.178
HGB(≥100 g/L/<100 g/L) 1.068 0.481~2.370 0.872
PLT(≥100×10 9 /L/<100×10 9 /L) 1.390 0.484~3.993 0.541
VAF(<20%/20%~40%/≥40%) 1.010 0.977~1.044 0.613
外周血原始幼稚细胞(≥20%/<20%) 0.852 0.429~1.692 0.647
骨髓原始细胞(≥80%/<80%) 1.189 0.556~2.545 0.655
异常细胞占有核细胞(≥20%/<20%) 2.152 1.067~4.339 0.032
复杂核型 6.800 1.319~35.05 0.022
FLT3-ITD突变 1.258 0.296~5.352 0.756
NPM1突变 0.547 0.074~4.048 0.555
CEBPA突变 1.296 0.534~3.146 0.567
TP53突变 6.154 0.758~49.948 0.089
RUNX1突变 1.926 0.736~5.036 0.182
DNMT3A突变 0.827 0.197~3.460 0.794
IDH2突变 0.781 0.318~1.198 0.590
SRSF2突变 0.981 0.439~2.195 0.964
TET2突变 2.239 1.087~4.611 0.029
多因素分析
异常细胞占有核细胞(≥20%/<20%) 2.678 1.167~6.186 0.020
复杂核型 6.824 1.180~39.458 0.032
TET2突变 2.441 1.037~5.747 0.041

注:VAF:变异等位基因频率

讨论

ASXL1基因突变可促进造血干细胞(HSC)的克隆扩增,并导致造血功能受损 [9] [10] 。此外,突变后的蛋白失去了与多梳抑制复合物2(PRC2)蛋白的相互作用,加速骨髓恶性肿瘤的进展,原因可能是野生型ASXL1能招募PRC2复合物到已知的白血病原癌基因位点,从而抑制疾病发生 [9] , [11] 。另外,BAP1被证实是一种肿瘤抑制剂 [12] ,突变后的新等位基因可抑制野生型ASXL1与BAP1-TF的相互作用,从而损害ASXL1-BAP1-TF抑制白血病细胞增殖的功能 [13] 。以上可能是ASXL1突变致肿瘤发生的潜在机制。

有文献报道,伴ASXL1突变的AML患者高龄、男性较多 [14] [18] 、外周血WBC较高 [15] 、外周血原始幼稚细胞比例和骨髓原始细胞比例较低 [16] 。本研究显示,ASXL1突变患者初诊时年龄及外周血WBC较高,与上述报道相似,但未发现与外周血原始幼稚细胞和骨髓原始细胞存在明显相关性,可能与研究病例数较少有关。

ASXL1突变与FLT3、NPM1、WT1、DNMT3A等突变呈负相关 [14] , [16] , [18] ,而常伴随TET2、IDH2、RUNX1、CEBPA突变 [14] , [16] [18] 。本研究中ASXL1突变与IDH2、TET2基因突变呈正相关,且与IDH2突变的相关性有统计学意义。有研究显示IDH2基因突变与AML的发生和CR/CR i 降低有关 [19] [21] ,提示ASXL1与IDH2可能是共同导致AML患者预后不良的基因。我们还发现ASXL1复合基因突变患者骨髓原始细胞、异常细胞占有核细胞比例较ASXL1单基因突变患者低,可能与复合基因突变患者伴较多预后好的突变基因有关,如NPM1等 [22] [23] ,导致反映预后的指标总体好于ASXL1单基因突变患者。

在本研究的656例AML患者中,有11.1%发生ASXL1突变,与国外研究结果相仿 [24] 。Sasaki 等 [25] 研究表明ASXL1在AML患者中的中位VAF为34.31%,且VAF与新诊断AML患者的预后较差有关。本研究结果显示高突变率组中位外周血原始幼稚细胞比例高于低突变率组,且VAF与年龄和外周血原始幼稚细胞比例呈正相关关系,提示随着ASXL1基因VAF的升高,患者年龄、外周血原始幼稚细胞比例也随之变高,可能与预后不良有关,这与Sasaki等 [25] 的研究结果相似。

ASXL1基因突变在AML患者中主要表现为移码和错义突变,导致C端截断突变的ASXL1蛋白的产生 [26] 。已知碱基替换会导致错义突变,碱基重复及缺失突变均会导致移码突变。本研究首次发现碱基重复与替换突变患者中位异常细胞占有核细胞比例均高于碱基缺失突变患者,提示碱基缺失突变有较好预后,可用碱基突变位点的保守性和突变后蛋白结构间的差异性解释。首先,Mutation Taster软件预测碱基重复和缺失突变各位点为致病性突变,且重复突变反映保守性指标PhyloP和PhastCons值均高于缺失突变,值越高说明突变在生物体中发挥更大的作用,因此可认为碱基重复突变总体致病力强于缺失突变。另外,Chimera软件分析示碱基重复与替换突变后蛋白的RMSD值(反映蛋白质结构间差异性指标,值越高说明与天然蛋白差异越大)均高于缺失突变,说明前两种突变后蛋白结构的变化大于后者,失去更多正常功能,预后较差。

有文献报道伴ASXL1基因突变AML患者预后不良,表现为较短的OS时间 [16] , [18] , [22] , [24] , [27] 和PFS时间 [24] 和较低的CR/CR 1 [21] ,即使化疗后正常造血也难以恢复 [28] 。本研究中,ASXL1 + 患者OS及PFS时间均短于ASXL1 患者,与上述结果一致。其中,老年组ASXL1 + 患者PFS时间短于该基因未突变患者,而OS时间差异无统计学意义;中年组ASXL1 + 患者OS及PFS时间均短于ASXL1 患者。我们推测可能是年龄(≥60岁)对OS影响更大 [29] ,导致老年组中年龄因素相比ASXL1突变占据主导作用,致OS差异较小,而中年组中此作用相对降低,ASXL1突变对OS和PFS的影响得以显现。青年组ASXL1 + 与ASXL1 患者间OS与PFS时间差异无统计学意义,可能是青年组患者及其突变阳性病例数较少,影响该组生存分析结果的代表性。以上结果表明ASXL1基因突变为AML患者预后不良因素。

综上所述,伴ASXL1基因突变的非M 3 型AML患者,初诊时年龄偏高、WBC高、CR 1 率低,且OS、PFS时间短,预后较差。碱基缺失突变患者较其他突变患者可能有更好的预后,且异常细胞占有核细胞比例高、复杂核型和TET2突变为影响远期生存的危险因素,提示我们在临床治疗过程中应常规进行基因检测,以指导临床诊疗决策。碱基缺失突变相比其他突变能更好地反映预后,具体机制有待进一步探讨。

Footnotes

利益冲突 所有作者声明无利益冲突

作者贡献声明 贾闻博、刘金婷、吴汉阳:起草文章、采集数据、分析/解释数据、统计学分析;杨新雨、魏义洪:采集数据、支持性贡献;灿灿、王锐卿、何娜、谷朝阳:对文章的知识性内容作批评性审阅;马道新、纪春岩:分析/解释数据、获取研究经费、指导

References

1. Zhao W, Hu X, Liu Y, et al. A de novo Variant of ASXL1 Is Associated With an Atypical Phenotype of Bohring-Opitz Syndrome: Case Report and Literature Review[J] Front Pediatr. 2021; 9 :678615. doi: 10.3389/fped.2021.678615. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. 盛 梦瑶, 周 圆, 许 明江, et al. ASXL1突变在髓系疾病中的研究进展[J] 中国实验血液学杂志 2014; 04 :1183–1187. doi: 10.7534/j.issn.1009-2137.2014.04.057. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients[J] Leukemia. 2014; 28 (7):1494–1500. doi: 10.1038/leu.2014.57. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. 曲 士强, 秦 铁军, 徐 泽锋, et al. 高嗜酸性粒细胞综合征及慢性嗜酸性粒细胞白血病的靶向测序研究[J] 中华血液学杂志 2018; 39 (6):501–506. doi: 10.3760/cma.j.issn.0253-2727.2018.06.013. [ CrossRef ] [ Google Scholar ]
5. 崔 亚娟, 李 冰, 江 倩, et al. 慢性中性粒细胞白血病CSF3R、ASXL1、SETBP1、JAK2 V617F和CALR基因突变研究[J] 中华血液学杂志 2014; 35 (12):1069–1073. doi: 10.3760/cma.j.issn.0253-2727.2014.12.005. [ CrossRef ] [ Google Scholar ]
6. Williams L, Doucette K, Karp JE, et al. Genetics of donor cell leukemia in acute myelogenous leukemia and myelodysplastic syndrome[J] Bone Marrow Transplant. 2021; 56 (7):1535–1549. doi: 10.1038/s41409-021-01214-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. 中华医学会血液学分会白血病淋巴瘤学组 中国成人急性髓系白血病(非急性早幼粒细胞白血病)诊疗指南(2021年版)[J] 中华血液学杂志 2021; 42 (8):617–623. doi: 10.3760/cma.j.issn.0253-2727.2021.08.001. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. 吴 瑞盈, 谢 新生, 魏 妍, et al. IDH不同突变亚型及伴发基因突变对急性髓系白血病患者的预后意义[J] 中华血液学杂志 2021; 42 (1):39–44. doi: 10.3760/cma.j.issn.0253-2727.2021.01.008. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Asada S, Fujino T, Goyama S, et al. The role of ASXL1 in hematopoiesis and myeloid malignancies[J] Cell Mol Life Sci. 2019; 76 (13):2511–2523. doi: 10.1007/s00018-019-03084-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Gjini E, Jing CB, Nguyen AT, et al. Disruption of asxl1 results in myeloproliferative neoplasms in zebrafish[J] Dis Model Mech. 2019; 12 (5):dmm035790. doi: 10.1242/dmm.035790. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Gelsi-Boyer V, Brecqueville M, Devillier R, et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases[J] J Hematol Oncol. 2012; 5 :12. doi: 10.1186/1756-8722-5-12. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression[J] Nat Cell Biol. 2018; 20 (10):1181–1192. doi: 10.1038/s41556-018-0178-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Xia YK, Zeng YR, Zhang ML, et al. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network[J] Protein Cell. 2021; 12 (7):557–577. doi: 10.1007/s13238-020-00754-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Chou WC, Huang HH, Hou HA, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations[J] Blood. 2010; 116 (20):4086–4094. doi: 10.1182/blood-2010-05-283291. [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Kakosaiou K, Panitsas F, Daraki A, et al. ASXL1 mutations in AML are associated with specific clinical and cytogenetic characteristics[J] Leuk Lymphoma. 2018; 59 (10):2439–2446. doi: 10.1080/10428194.2018.1433298. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Metzeler KH, Becker H, Maharry K, et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category[J] Blood. 2011; 118 (26):6920–6929. doi: 10.1182/blood-2011-08-368225. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Yu J, Li Y, Li T, et al. Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia[J] Exp Hematol Oncol. 2020; 9 :2. doi: 10.1186/s40164-019-0158-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Schnittger S, Eder C, Jeromin S, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome[J] Leukemia. 2013; 27 (1):82–91. doi: 10.1038/leu.2012.262. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Stein EM, DiNardo CD, Fathi AT, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib[J] Blood. 2019; 133 (7):676–687. doi: 10.1182/blood-2018-08-869008. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Pollyea DA, Tallman MS, de Botton S, et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia[J] Leukemia. 2019; 33 (11):2575–2584. doi: 10.1038/s41375-019-0472-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Huls G, Chitu DA, Pabst T, et al. Ibrutinib added to 10-day decitabine for older patients with AML and higher risk MDS[J] Blood Adv. 2020; 4 (18):4267–4277. doi: 10.1182/bloodadvances.2020002846. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Patel JP, Gönen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia[J] N Engl J Med. 2012; 366 (12):1079–1089. doi: 10.1056/NEJMoa1112304. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Heath EM, Chan SM, Minden MD, et al. Biological and clinical consequences of NPM1 mutations in AML[J] Leukemia. 2017; 31 (4):798–807. doi: 10.1038/leu.2017.30. [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Zong X, Yao H, Wen L, et al. ASXL1 mutations are frequent in de novo AML with trisomy 8 and confer an unfavorable prognosis[J] Leuk Lymphoma. 2017; 58 (1):204–206. doi: 10.1080/10428194.2016.1179296. [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Sasaki K, Kanagal-Shamanna R, Montalban-Bravo G, et al. Impact of the variant allele frequency of ASXL1, DNMT3A, JAK2, TET2, TP53, and NPM1 on the outcomes of patients with newly diagnosed acute myeloid leukemia[J] Cancer. 2020; 126 (4):765–774. doi: 10.1002/cncr.32566. [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Fujino T, Kitamura T. ASXL1 mutation in clonal hematopoiesis[J] Exp Hematol. 2020; 83 :74–84. doi: 10.1016/j.exphem.2020.01.002. [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Prats-Martín C, Burillo-Sanz S, Morales-Camacho RM, et al. ASXL1 mutation as a surrogate marker in acute myeloid leukemia with myelodysplasia-related changes and normal karyotype[J] Cancer Med. 2020; 9 (11):3637–3646. doi: 10.1002/cam4.2947. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Murphy T, Zou J, Daher-Reyes GS, et al. Impact of preleukemic mutations and their persistence on hematologic recovery after induction chemotherapy for AML[J] Blood Adv. 2019; 3 (15):2307–2311. doi: 10.1182/bloodadvances.2019000306. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. Fan Y, Liao L, Liu Y, et al. Risk factors affect accurate prognosis in ASXL1-mutated acute myeloid leukemia[J] Cancer Cell Int. 2021; 21 (1):526. doi: 10.1186/s12935-021-02233-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Chinese Journal of Hematology are provided here courtesy of Editorial Office of Chinese Journal of Hematology