当客户端访问目标服务器或负载均衡,使用ping命令测试出现丢包或不通时,可以通过MTR等工具进行链路测试来判断问题来源。本文先介绍了MTR工具的基本原理,然后对测试结果进行分析,以及对测试步骤进行了说明。
MTR基本信息
MTR(My traceroute)是几乎所有Linux发行版本预装的网络测试工具,此工具也有对应的Windows版本,名称为WinMTR。
MTR工具将ping和traceroute命令的功能并入了同一个工具中,实现更强大的功能。
Linux版本的mtr命令默认发送ICMP数据包进行链路探测。可以通过“-u”参数来指定使用UDP数据包用于探测。
相对于traceroute命令只会做一次链路跟踪测试,mtr命令会对链路上的相关节点做持续探测并给出相应的统计信息。所以,mtr命令能避免节点波动对测试结果的影响,所以其测试结果更正确,建议优先使用。
在Windows系统上使用
WinMTR是MTR工具在Windows环境下的图形化实现,但进行了功能简化,只支持MTR部分参数的调整设置。WinMTR默认发送ICMP数据包进行探测,无法切换。
WinMTR可以从其官方网站下载获取。和mtr命令一样,相比tracert,WinMTR能避免节点波动对测试结果的影响,所以测试结果更正确。
所以,在WinMTR可用的情况下,建议优先使用 WinMTR 进行链路测试。
WinMTR无需安装,直接解压运行即可,操作方法非常简单。运行程序后,在Host字段输入目标服务器域名或 IP,注意前面不要包含空格。如下图所示
正向链路测试(PING和MTR)
从客户端向目标服务器做PING和MTR链路测试。从客户端向目标服务器域名或IP做持续的PING测试,建议至少测试100个数据包,记录测试结果。根据客户端操作系统环境的不同,使用WinMTR或mtr命令,设置测试目的地址为目标服务器域名或IP,然后进行链路测试,记录测试结果。
反向链路测试(PING和MTR)
进入目标服务器系统内部,做反向PING和MTR链路测试。从目标服务器向客户端IP做持续的PING测试,建议至少测试100个数据包,记录测试结果。根据目标服务器操作系统环境的不同,使用WinMTR或mtr命令,设置测试目的地址为客户端IP,然后进行链路测试,记录测试结果。
测试结果分析
参阅前述说明,对测试结果进行分析。确认异常节点后,访问
淘宝IP地址库
等网站查询、获取相应节点归属运营商及网络。如果是客户端本地网络相关节点出现异常,则需要对本地网络进行相应排查分析。如果是运营商相关节点出现异常,则需要直接联系运营商,或联系阿里云售后技术支持向相应运营商反馈问题。
链路测试结果分析简要说明
由于mtr(WinMTR)命令有更高的准确性,本文以其测试结果为例,对链路测试结果的分析进行简要说明。后续的说明,以如下链路测试结果示例图为基础进行阐述。
对链路测试结果进行分析时,需要关注如下几点:
正常情况下,从客户端到目标服务器的整个链路,会显著的包含如下区域。
客户端本地网络:本地局域网和本地网络提供商网络。如前文链路测试结果示例图中的区域A。如果该区域出现异常,如果是客户端本地网络相关节点出现异常,则需要对本地网络进行相应排查分析。否则,如果是本地网络提供商网络相关节点出现异常,则需要向当地运营商反馈问题。
运营商骨干网络:如前文链路测试结果示例图中的区域B。如果该区域出现异常,可以根据异常节点IP查询归属运营商,然后直接或通过阿里云售后技术支持,向相应运营商反馈问题。
目标服务器本地网络:目标主机归属网络提供商网络。如前文链路测试结果示例图中的区域C。如果该区域出现异常,则需要向目标主机归属网络提供商反馈问题。
链路负载均衡:如前文链路测试结果示例图中的区域D。如果中间链路某些部分启用了链路负载均衡,则mtr命令只会对首尾节点进行编号和探测统计。中间节点只会显示相应的IP或域名信息。
结合Avg(平均值)和StDev(标准偏差)综合判断
由于链路抖动或其它因素的影响,节点的Best和Worst值可能相差很大。而Avg(平均值)统计了自链路测试以来所有探测的平均值,所以能更好的反应出相应节点的网络质量。而StDev(标准偏差值)越高,则说明数据包在相应节点的延时值越不相同(越离散)。所以标准偏差值可用于协助判断Avg是否真实反应了相应节点的网络质量。例如,如果标准偏差很大,说明数据包的延迟是不确定的。可能某些数据包延迟很小(例如:25ms),而另一些延迟却很大(例如:350ms),但最终得到的平均延迟反而可能是正常的。所以此时Avg并不能很好的反应出实际的网络质量情况。
综上,建议的分析标准如下:
如果StDev很高,则同步观察相应节点的Best和Wrst,来判断相应节点是否存在异常。
如果在某一跳之后延迟明显陡增,则通常判断该节点存在网络异常。如前文链路测试结果示例图所示,从第5跳之后的后续节点延迟明显陡增,则推断是第5跳节点出现了网络异常。不过,高延迟并不一定完全意味着相应节点存在异常。如前文链路测试结果示例图所示,第5跳之后,虽然后续节点延迟明显陡增,但测试数据最终仍然正常到达了目的主机。所以,延迟大也有可能是在数据回包链路中引发的。所以,最好结合反向链路测试一并分析。
ICMP限速导致延迟增加
ICMP策略限速也可能会导致相应节点的延迟陡增,但后续节点通常会恢复正常。如前文链路测试结果示例图所示,第3跳有 100%的丢包率,同时延迟也明显陡增。但随后节点的延迟马上恢复了正常。所以判断该节点的延迟陡增及丢包是由于策略限速所致。
常见链路异常场景和测试报告分析
目标主机网络配置不当
如上图所示,在该示例中,数据包在目标地址出现了100%的丢包。乍一看是数据包没有到达,其实很有可能是目标服务器相关安全策略,例如防火墙、iptables等禁用了ICMP所致,导致目的主机无法发送任何应答。所以,该场景需要排查目标服务器的安全策略配置。
ICMP限速
如上图所示,在该示例中,数据包在目标地址出现了100%的丢包。初步看是数据包没有到达,其实很有可能是目标服务器相关安全策略,例如防火墙、iptables 、运营商策略等禁用了ICMP所致,导致目的主机无法发送任何应答。所以,该场景需要排查目标服务器的安全策略配置,或结合反向MTR综合分析。
如上图所示,在该示例中数据包在第5跳之后出现了循环跳转,导致最终无法到达目标服务器。这通常是由于运营商相关节点路由配置异常所致。所以,该场景需要联系相应节点归属运营商处理。
如上图所示,在该示例中,数据包在第4跳之后就无法收到任何反馈。这通常是由于相应节点中断所致。建议结合反向链路测试做进一步确认。该场景需要联系相应节点归属运营商处理。
原文地址:
https://help.aliyun.com/knowledge_detail/98706.html