添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

1.opencv

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。 [1]  它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令, 如今也提供对于C#、Ch、Ruby,GO的支持。

2.安装opencv

下载opencv

链接:https://pan.baidu.com/s/19h0IMvGLZ5-ow_TWkfDG1w
提取码:7xd9
复制这段内容后打开百度网盘手机App,操作更方便哦--来自百度网盘超级会员V4的分享

UVC摄像头 java 控制库 java opencv 摄像头_UVC摄像头 java 控制库

3.复制M:\opencv\opencv\build\bin

UVC摄像头 java 控制库 java opencv 摄像头_ide_02

到M:\opencv\opencv\build\java\x64

UVC摄像头 java 控制库 java opencv 摄像头_ide_03

4.新建一个mavne项目添加pom文件

<dependencies>
        <dependency>
            <groupId>org.bytedeco.javacpp-presets</groupId>
            <artifactId>ffmpeg</artifactId>
            <version>4.1-1.4.4</version>
        </dependency>
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>javacv</artifactId>
            <version>1.4.4</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.bytedeco.javacpp-presets/ffmpeg-platform -->
        <dependency>
            <groupId>org.bytedeco.javacpp-presets</groupId>
            <artifactId>ffmpeg-platform</artifactId>
            <version>4.1-1.4.4</version>
        </dependency>
        <dependency>
            <groupId>commons-io</groupId>
            <artifactId>commons-io</artifactId>
            <version>2.4</version>
        </dependency>
        <!-- 视频摄像头 -->
        <!-- https://mvnrepository.com/artifact/org.bytedeco/javacv-platform -->
        <dependency>
            <groupId>org.bytedeco</groupId>
            <artifactId>javacv-platform</artifactId>
            <version>1.4.4</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.bytedeco.javacpp-presets/opencv-platform -->
        <dependency>
            <groupId>org.bytedeco.javacpp-presets</groupId>
            <artifactId>opencv-platform</artifactId>
            <version>4.0.1-1.4.4</version>
        </dependency>
    </dependencies>

5.导入jar包opencv-411.jar

UVC摄像头 java 控制库 java opencv 摄像头_UVC摄像头 java 控制库_04

6.修改配置模块库


UVC摄像头 java 控制库 java opencv 摄像头_UVC摄像头 java 控制库_05


UVC摄像头 java 控制库 java opencv 摄像头_OpenCV_06


UVC摄像头 java 控制库 java opencv 摄像头_UVC摄像头 java 控制库_07

7.main方法中有静态方法自行查看效果

import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.VideoWriter;
import org.opencv.videoio.Videoio;
import java.util.Arrays;
 * @Title: Opencv 图片人脸识别、实时摄像头人脸识别、视频文件人脸识别
 * @Description: OpenCV-4.1.1 测试文件
 * @date: 2019年8月19日 17:17:48
 * @version: V-1.0.0
public class FaceVideo {
    // 初始化人脸探测器
    static CascadeClassifier faceDetector;
    static int i = 0;
    static {
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
        faceDetector = new CascadeClassifier("M:\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
    public static void main(String[] args) {
        // 1- 从摄像头实时人脸识别,识别成功保存图片到本地
         getVideoFromCamera();
       // writeVideo();
        // 2- 从本地视频文件中识别人脸
//        getVideoFromFile();
        // 3- 本地图片人脸识别,识别成功并保存人脸图片到本地
        /*  face();*/
        // 4- 比对本地2张图的人脸相似度 (越接近1越相似)
        /*String basePicPath = "D:\\Documents\\Pictures\\";
        double compareHist = compare_image(basePicPath + "fc.jpg", basePicPath + "fc_1.jpg");
        System.out.println(compareHist);
        if (compareHist > 0.72) {
            System.out.println("人脸匹配");
        } else {
            System.out.println("人脸不匹配");
     * OpenCV-4.1.1 从摄像头实时读取
     * @return: void
     * @date: 2019年8月19日 17:20:13
    public static void getVideoFromCamera() {
        //1 如果要从摄像头获取视频 则要在 VideoCapture 的构造方法写 0
        VideoCapture capture = new VideoCapture(0);
        Mat video = new Mat();
        int index = 0;
        if (capture.isOpened()) {
            while (i < 3) {// 匹配成功3次退出
                capture.read(video);
                HighGui.imshow("实时人脸识别", getFace(video));
                index = HighGui.waitKey(100);
                if (index == 27) {
                    capture.release();
                    break;
        } else {
            System.out.println("摄像头未开启");
        try {
            capture.release();
            Thread.sleep(1000);
            System.exit(0);
        } catch (InterruptedException e) {
            e.printStackTrace();
        return;
     * OpenCV-4.1.1 从视频文件中读取
     * @return: void
     * @date: 2019年8月19日 17:20:20
    public static void getVideoFromFile() {
        VideoCapture capture = new VideoCapture();
        capture.open("C:\\Users\\Administrator\\Desktop\\1.avi");//1 读取视频文件的路径
        if (!capture.isOpened()) {
            System.out.println("读取视频文件失败!");
            return;
        Mat video = new Mat();
        int index = 0;
        while (capture.isOpened()) {
            capture.read(video);//2 视频文件的视频写入 Mat video 中
            HighGui.imshow("本地视频识别人脸", getFace(video));//3 显示图像
            index = HighGui.waitKey(100);//4 获取键盘输入
            if (index == 27) {//5 如果是 Esc 则退出
                capture.release();
                return;
     * OpenCV-4.1.1 人脸识别
     * @param image 待处理Mat图片(视频中的某一帧)
     * @return 处理后的图片
     * @date: 2019年8月19日 17:19:36
    public static Mat getFace(Mat image) {
        // 1 读取OpenCV自带的人脸识别特征XML文件(faceDetector)
//        CascadeClassifier facebook=new CascadeClassifier("D:\\Sofeware\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
        // 2  特征匹配类
        MatOfRect face = new MatOfRect();
        // 3 特征匹配
        faceDetector.detectMultiScale(image, face);
        Rect[] rects = face.toArray();
        System.out.println("匹配到 " + rects.length + " 个人脸");
        if (rects != null && rects.length >= 1) {
            // 4 为每张识别到的人脸画一个圈
            for (int i = 0; i < rects.length; i++) {
                Imgproc.rectangle(image, new Point(rects[i].x, rects[i].y), new Point(rects[i].x + rects[i].width, rects[i].y + rects[i].height), new Scalar(0, 255, 0));
                Imgproc.putText(image, "Human", new Point(rects[i].x, rects[i].y), Imgproc.FONT_HERSHEY_SCRIPT_SIMPLEX, 1.0, new Scalar(0, 255, 0), 1, Imgproc.LINE_AA, false);
                //Mat dst=image.clone();
                //Imgproc.resize(image, image, new Size(300,300));
            if (i == 3) {// 获取匹配成功第10次的照片
                Imgcodecs.imwrite("D:\\Documents\\Pictures\\" + "face.png", image);
        return image;
     * OpenCV-4.1.1 图片人脸识别
     * @return: void
     * @date: 2019年5月7日12:16:55
    public static void face() {
        // 1 读取OpenCV自带的人脸识别特征XML文件
        //OpenCV 图像识别库一般位于 opencv\sources\data 下面
//        CascadeClassifier facebook=new CascadeClassifier("D:\\Sofeware\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
        // 2 读取测试图片
        String imgPath = "D:\\Documents\\Pictures\\he.png";
        Mat image = Imgcodecs.imread(imgPath);
        if (image.empty()) {
            System.out.println("image 内容不存在!");
            return;
        // 3 特征匹配
        MatOfRect face = new MatOfRect();
        faceDetector.detectMultiScale(image, face);
        // 4 匹配 Rect 矩阵 数组
        Rect[] rects = face.toArray();
        System.out.println("匹配到 " + rects.length + " 个人脸");
        // 5 为每张识别到的人脸画一个圈
        int i = 1;
        for (Rect rect : face.toArray()) {
            Imgproc.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
                    new Scalar(0, 255, 0), 3);
            imageCut(imgPath, "D:\\Documents\\Pictures\\" + i + ".jpg", rect.x, rect.y, rect.width, rect.height);// 进行图片裁剪
        // 6 展示图片
        HighGui.imshow("人脸识别", image);
        HighGui.waitKey(0);
     * 裁剪人脸
     * @param imagePath
     * @param outFile
     * @param posX
     * @param posY
     * @param width
     * @param height
    public static void imageCut(String imagePath, String outFile, int posX, int posY, int width, int height) {
        // 原始图像
        Mat image = Imgcodecs.imread(imagePath);
        // 截取的区域:参数,坐标X,坐标Y,截图宽度,截图长度
        Rect rect = new Rect(posX, posY, width, height);
        // 两句效果一样
        Mat sub = image.submat(rect); // Mat sub = new Mat(image,rect);
        Mat mat = new Mat();
        Size size = new Size(width, height);
        Imgproc.resize(sub, mat, size);// 将人脸进行截图并保存
        Imgcodecs.imwrite(outFile, mat);
        System.out.println(String.format("图片裁切成功,裁切后图片文件为: %s", outFile));
     * 人脸比对
     * @param img_1
     * @param img_2
     * @return
    public static double compare_image(String img_1, String img_2) {
        Mat mat_1 = conv_Mat(img_1);
        Mat mat_2 = conv_Mat(img_2);
        Mat hist_1 = new Mat();
        Mat hist_2 = new Mat();
        //颜色范围
        MatOfFloat ranges = new MatOfFloat(0f, 256f);
        //直方图大小, 越大匹配越精确 (越慢)
        MatOfInt histSize = new MatOfInt(1000);
        Imgproc.calcHist(Arrays.asList(mat_1), new MatOfInt(0), new Mat(), hist_1, histSize, ranges);
        Imgproc.calcHist(Arrays.asList(mat_2), new MatOfInt(0), new Mat(), hist_2, histSize, ranges);
        // CORREL 相关系数
        double res = Imgproc.compareHist(hist_1, hist_2, Imgproc.CV_COMP_CORREL);
        return res;
     * 灰度化人脸
     * @param img
     * @return
    public static Mat conv_Mat(String img) {
        Mat image0 = Imgcodecs.imread(img);
        Mat image1 = new Mat();
        // 灰度化
        Imgproc.cvtColor(image0, image1, Imgproc.COLOR_BGR2GRAY);
        // 探测人脸
        MatOfRect faceDetections = new MatOfRect();
        faceDetector.detectMultiScale(image1, faceDetections);
        // rect中人脸图片的范围
        for (Rect rect : faceDetections.toArray()) {
            Mat face = new Mat(image1, rect);
            return face;
        return null;
     * OpenCV-4.1.1 将摄像头拍摄的视频写入本地
     * @return: void
     * @date: 2019年8月19日 17:20:48
    public static void writeVideo() {
        //1 如果要从摄像头获取视频 则要在 VideoCapture 的构造方法写 0
        VideoCapture capture = new VideoCapture(0);
        Mat video = new Mat();
        int index = 0;
        Size size = new Size(capture.get(Videoio.CAP_PROP_FRAME_WIDTH), capture.get(Videoio.CAP_PROP_FRAME_HEIGHT));
        VideoWriter writer = new VideoWriter("M:/a.mp4", VideoWriter.fourcc('D', 'I', 'V', 'X'), 15.0, size, true);
        while (capture.isOpened()) {
            capture.read(video);//2 将摄像头的视频写入 Mat video 中
            writer.write(video);
            HighGui.imshow("像头获取视频", video);//3 显示图像
            index = HighGui.waitKey(100);//4 获取键盘输入
            if (index == 27) {//5 如果是 Esc 则退出
                capture.release();
                writer.release();
                return;
}

出现java.lang.UnsatisfiedLinkError: no opencv_java411 in java.library.path


UVC摄像头 java 控制库 java opencv 摄像头_UVC摄像头 java 控制库_08

配置运行参数:-Djava.library.path=M:\opencv\opencv\build\java\x64;

UVC摄像头 java 控制库 java opencv 摄像头_ide_09

jquery模糊选择器 javascript模糊查询

最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:  function search(){ var arr=new Array("m

4.OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 5.第14周项目2-用文件保存的学生名单