添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
幸福的麦片  ·  Python创建对话框_class ...·  6 月前    · 
温文尔雅的汤圆  ·  mysql show ...·  1 年前    · 

观察开始到观察终止的 时间 通常称为 生存时间 (或事件发生的时间)。

癌症研究中两个最重要的评价方法包括:i) 死亡时间 ;和ii)无 复发存活时间 ,其对应于治疗反应与疾病复发之间的时间。它也被称为无 病生存时间 和无 事件生存时间

如上所述,生存分析侧重于直到发生感兴趣事件(复发或死亡)的期望持续时间。

Kaplan-Meier生存评估

Kaplan-Meier(KM)方法是一种非参数方法,用于估计观察到的生存时间的生存概率(Kaplan和Meier,1958)。

生存曲线是管理生存概率与时间的关系曲线,它提供了一个有用的数据总结,可以用来估计诸如中位生存时间之类的衡量指标。

R生存分析

生存分析总结和可视化生存分析结果

示例数据集

我们将使用生存包中提供的肺癌数据。

head(lung)
  inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1    3  306      2  74   1       1       90       100     1175      NA
2    3  455      2  68   1       0       90        90     1225      15
3    3 1010      1  56   1       0       90        90       NA      15
4    5  210      2  57   1       1       90        60     1150      11
5    1  883      2  60   1       0      100        90       NA       0
6   12 1022      1  74   1       1       50        80      513       0

inst:机构代码

时间:以天为单位的生存时间

状态:状态1 =审查,2 =死亡

年龄:年龄

性别:男= 1女= 2

ph.ecog:ECOG表现评分(0 =正常 5 =死亡)

ph.karno:Karnofsky表现评分(差 = 0 正常= 100)由医师评定

pat.karno:Karnofsky表现评分由患者评估

膳食:餐时消耗的卡路里

wt.loss:过去六个月的体重下降

计算生存曲线:survfit()

我们要按性别来计算生存概率。

函数survfit()可以被用来计算Kaplan-Meier生存估计。

使用函数Surv()创建的生存对象

要计算生存曲线,请输入以下内容:

print(fit)
       n events median 0.95LCL 0.95UCL
sex=1 138    112    270    212    310
sex=2  90    53    426    348    550

默认情况下,函数print()显示生存曲线的摘要。它显示观察数,事件数量,中位数生存和中位数的置信区间。

如果要显示生存曲线的更完整摘要,请输入以下内容:

# 生存曲线摘要
summary(fit)# 
summary(fit)$table

可视化生存曲线

我们 生成两组受试者的生存曲线。

ggplot(fit,
          pval = TRUE, conf.int = TRUE,
          risk.table = TRUE, # 添加风险表
          risk.table.col = "strata", # 按组更改风险表颜色
   pval = TRUE,             # 显示对数秩检验的p值。
   conf.int = TRUE,         # 显示生存曲线点估计的置信区间。
   conf.int.style = "step",  # 自定义置信区间样式
   xlab = "Time in days",   # 自定义X轴标签。
   break.time.by = 200,     # 以200的时间间隔打断X轴。
   ggtheme = theme_light(), # 使用主题自定义绘图和风险表。
   risk.table = "abs_pct",  # 绝对数值

每组的中位生存时间表示生存概率S(t)为0.5的时间。

使用参数xlim可以缩短生存曲线范围,如下所示:

Log-Rank检验比较生存曲线:survdiff()

数秩检验是比较两条或更多条生存曲线的最广泛使用的方法。零假设是两组在生存期间没有差异。 

可以使用survdiff()如下:

surv_diff N Observed Expected (O-E)^2/E (O-E)^2/V sex=1 138      112    91.6      4.55      10.3 sex=2  90      53    73.4      5.68      10.3 Chisq= 10.3  on 1 degrees of freedom, p= 0.00131

存活率差异的对数秩检验给出p = 0.0013的p值,表明性别组在存活方面差异显着。

复杂的生存曲线

在本节中,我们将使用多个因素的组合计算生存曲线。接下来,我们将使用ggsurvplot()输出结果

ggplot(fit,
          conf.int = TRUE,
          risk.table.col = "strata", # 按组更改风险表颜色
          ggtheme = theme_bw(), # 更改ggplot2主题

可视化输出。下面的图显示了性别变量根据rx&adhere的值的生存曲线。

生存分析是一组数据分析的统计方法,其中感兴趣的结果变量是事件发生之前的时间。

在这篇文章中,我们演示了如何使用两个R软件包来执行和可视化生存分析)。

最受欢迎的见解

1.R语言绘制生存曲线估计|生存分析|如何R作生存曲线图

2.R语言生存分析可视化分析

3.R语言如何在生存分析与Cox回归中计算IDI,NRI指标

4.r语言中使用Bioconductor 分析芯片数据

5.R语言生存分析数据分析可视化案例

6.r语言ggplot2误差棒图快速指南

7.R 语言绘制功能富集泡泡图

8.R语言如何找到患者数据中具有差异的指标?(PLS—DA分析)

9.R语言中的生存分析Survival analysis晚期肺癌患者4例

分类:
开发工具
标签: