王帅, 向建军, 彭芳, 等 . 一种新的最速下降算法在自适应噪声对消中的应用[J]. 北京航空航天大学学报, 2021, 47(7): 1462-1469. doi: 10.13700/j.bh.1001-5965.2020.0218
引用本文:
王帅, 向建军, 彭芳, 等 . 一种新的最速下降算法在自适应噪声对消中的应用[J]. 北京航空航天大学学报, 2021, 47(7): 1462-1469.
doi:
10.13700/j.bh.1001-5965.2020.0218
WANG Shuai, XIANG Jianjun, PENG Fang, et al. Application of a new steepest descent algorithm in adaptive noise cancellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1462-1469. doi: 10.13700/j.bh.1001-5965.2020.0218(in Chinese)
Citation:
WANG Shuai, XIANG Jianjun, PENG Fang, et al. Application of a new steepest descent algorithm in adaptive noise cancellation[J].
Journal of Beijing University of Aeronautics and Astronautics
, 2021, 47(7): 1462-1469.
doi:
10.13700/j.bh.1001-5965.2020.0218
(in Chinese)
王帅, 向建军, 彭芳, 等 . 一种新的最速下降算法在自适应噪声对消中的应用[J]. 北京航空航天大学学报, 2021, 47(7): 1462-1469. doi: 10.13700/j.bh.1001-5965.2020.0218
引用本文:
王帅, 向建军, 彭芳, 等 . 一种新的最速下降算法在自适应噪声对消中的应用[J]. 北京航空航天大学学报, 2021, 47(7): 1462-1469.
doi:
10.13700/j.bh.1001-5965.2020.0218
WANG Shuai, XIANG Jianjun, PENG Fang, et al. Application of a new steepest descent algorithm in adaptive noise cancellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1462-1469. doi: 10.13700/j.bh.1001-5965.2020.0218(in Chinese)
Citation:
WANG Shuai, XIANG Jianjun, PENG Fang, et al. Application of a new steepest descent algorithm in adaptive noise cancellation[J].
Journal of Beijing University of Aeronautics and Astronautics
, 2021, 47(7): 1462-1469.
doi:
10.13700/j.bh.1001-5965.2020.0218
(in Chinese)
自适应噪声对消在很多领域有着重要应用。为了进行自适应噪声对消,提出了一种新的最速下降算法。该算法主要原理是对多元二次函数进行降维处理,使其变成一元二次函数,再应用抛物线的性质分别循环迭代地求解每一个维度上的极值。在自适应噪声对消应用中,所提算法与传统的自适应算法进行对比,具有收敛速度快,滤波效果好,滤波效果可调节,抗恶劣信噪比以及急剧变化信噪比,不需选择迭代步长,适合计算机和可编程硬件实现等优点。
自适应算法 /
最速下降算法 /
噪声对消 /
最小均方误差 /
自适应滤波器
Abstract:
Adaptive noise cancellation has important applications in many fields. In order to carry out adaptive noise cancellation, a new steepest descent algorithm is proposed. The main principle of the algorithm is to reduce the dimension of multivariate quadratic function to make it become a univariate quadratic function, and then apply the properties of parabola to iteratively solve the extremum of each dimension. Compared with the traditional adaptive algorithm, the new steepest descent algorithm shows the advantages of fast convergence, good filtering effect, adjustable filtering effect, resisting bad SNR and sharp change SNR, no need to choose iteration step, and suitable for computer and programmable hardware implementation.
Key words:
adaptive algorithm /
steepest descent algorithm /
noise cancellation /
minimum mean square error /
adaptive filter
蔡卫菊. 自适应RLS的噪声对消系统simulink仿真[J]. 科技经济导刊, 2019, 27(36): 31.
https://www.cnki.com.cn/Article/CJFDTOTAL-JJKJ201936018.htm
CAI W J. Simulink simulation of adaptive RLS noise cancellation system[J]. Technology and Economic Guide, 2019, 27(36): 31(in Chinese).
https://www.cnki.com.cn/Article/CJFDTOTAL-JJKJ201936018.htm
邢怀玺, 吴华, 陈游. LMS预处理的相位差机载单站无源定位方法[J]. 空军工程大学学报(自然科学版), 2019, 20(6): 9-14.
https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201906002.htm
XING H X, WU H, CHEN Y. A phase difference airborne single-station passive location method based on LMS preprocessing[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(6): 9-14(in Chinese).
https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201906002.htm
景源, 汪洪涛. 一种新的变步长LMS算法及在自适应波束形成中的应用[J]. 辽宁大学学报(自然科学版), 2018, 45(4): 326-330.
https://www.cnki.com.cn/Article/CJFDTOTAL-LNDZ201804006.htm
JING Y, WANG H T. A new variable step size LMS algorithm and its application in adaptive beamforming[J]. Journal of Liaoning University (Natural Sciences Edition), 2018, 45(4): 326-330(in Chinese).
https://www.cnki.com.cn/Article/CJFDTOTAL-LNDZ201804006.htm
GOEL N, KAUR H, SAXENA J. Modified decision based unsymmetric adaptive neighborhood trimmed mean filter for removal of very high density salt and pepper noise[J]. Multimedia Tools and Applications, 2020, 79(1): 1-30.
http://www.researchgate.net/publication/340262832_Modified_decision_based_unsymmetric_adaptive_neighborhood_trimmed_mean_filter_for_removal_of_very_high_density_salt_and_pepper_noise
李轲, 张国栋, 冀启东. 基于FPGA的自适应滤波技术在雷达信号处理中的应用研究[J]. 舰船电子工程, 2018, 38(12): 83-87.
doi:
10.3969/j.issn.1672-9730.2018.12.020
LI K, ZHANG G D, JI Q D. Application of adaptive filtering in radar signal processing based on FPGA[J]. Ship Electronic Engineering, 2018, 38(12): 83-87(in Chinese).
doi:
10.3969/j.issn.1672-9730.2018.12.020
霍陆陆. 基于自适应噪声相消的语音增强系统研究[D]. 西安: 西安电子科技大学, 2019: 1-20.
HUO L L. Speech enhancement system based on adaptive noise cancellation[D]. Xi'an: Xidian University, 2019: 1-20(in Chinese).
KWONG R H, JOHNSTON E W. A variable step size LMS algorithm[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1633-1642.
doi:
10.1109/78.143435
靳翼, 邵怀宗. 一种新的变步长LMS自适应滤波算法及其仿真[J]. 信号处理, 2010, 26(9): 1385-1388.
doi:
10.3969/j.issn.1003-0530.2010.09.018
JIN Y, SHAO H Z. A novel variable step size LMS adaptive filtering algorithm and its simulation[J]. Signal Processing, 2010, 26(9): 1385-1388(in Chinese).
doi:
10.3969/j.issn.1003-0530.2010.09.018
MENG X S, LIN Y, YAN L, et al. Airborne LiDAR point cloud filtering by a multilevel adaptive filter based on morphological reconstruction and thin plate spline interpolation[J]. Electronics, 2019, 8(10): 1153.
doi:
10.3390/electronics8101153
SHRIVASTAVA P C, KUMAR P, TIWARI M, et al. Efficient architecture for the realization of 2-D adaptive FIR filter using distributed arithmetic[J]. Circuits, Systems, and Signal Processing, 2021, 40(5): 1458-1478.
doi:
10.1007/s00034-020-01539-y
白征东, 李帅, 陈波波, 等. 带约束的自适应抗差整体最小二乘滤波[J]. 测绘科学, 2019, 44(1): 5-9.
https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201901002.htm
BAI Z D, LI S, CHEN B B, et al. Adaptive robust global least square filtering with constraints[J]. Science of Surveying and Mapping, 2019, 44(1): 5-9(in Chinese).
https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201901002.htm
覃景繁, 欧阳景正. 一种新的变步长LMS自适应滤波算法[J]. 数据采集与处理, 1997, 12(3): 171-174.
https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ199703002.htm
QIN J F, OUYANG J Z. A new variable step size LMS adaptive filtering algorithm[J]. Journal of Data Acquisition and Processing, 1997, 12(3): 171-174(in Chinese).
https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ199703002.htm
高鹰, 谢胜利. 一种变步长LMS自适应滤波算法及分析[J]. 电子学报, 2001, 29(8): 1094-1097.
doi:
10.3321/j.issn:0372-2112.2001.08.023
GAO Y, XIE S L. A variable step size LMS adaptive filtering algorithm and its analysis[J]. Acta Electronica Sinica, 2001, 29(8): 1094-1097(in Chinese).
doi:
10.3321/j.issn:0372-2112.2001.08.023
兰瑞明, 唐普英. 一种新的变步长LMS自适应算法[J]. 系统工程与电子技术, 2005, 27(7): 1307-1310.
doi:
10.3321/j.issn:1001-506X.2005.07.043
LAN R M, TANG P Y. New variable step-size LMS adaptive algorithm[J]. Systems Engineering and Electronics, 2005, 27(7): 1307-1310(in Chinese).
doi:
10.3321/j.issn:1001-506X.2005.07.043
CHENG X Z, XU J D, WEI A Y, et al. Application of RLS adaptive filtering in signal de-noising[J]. Journal of Measurement Science and Instrumentation, 2014, 5(1): 32-36.
韩伟, 王大志, 刘震. 基于可变遗忘因子RLS算法的谐波电流检测方法[J]. 电工技术学报, 2013, 28(12): 70-74.
doi:
10.3969/j.issn.1000-6753.2013.12.009
HAN W, WANG D Z, LIU Z. A harmonic current detection method based on variable forgetting factor RLS algorithm[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 70-74(in Chinese).
doi:
10.3969/j.issn.1000-6753.2013.12.009
SABZI M, KAMAREI M, RAZBAN T, et al. New noise cancellation topology in common-gate LNAs[J]. Microelectronics Journal, 2020, 100: 104800.
http://www.researchgate.net/publication/340858785_New_Noise_Cancellation_Topology_in_Common-gate_LNAs
HAN F L, ZHANG H B, RUI J W, et al. Multiple point geostatistical simulation with adaptive filter derived from neural network for sedimentary facies classification[J]. Marine and Petroleum Geology, 2020, 118: 104406.
doi:
10.1016/j.marpetgeo.2020.104406
茹国宝, 黄燕, 郭英杰, 等. 基于对数函数的新变步长LMS算法[J]. 武汉大学学报(理学版), 2015, 61(3): 295-298.
https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201503017.htm
RU G B, HUANG Y, GUO Y J, et al. New variable step size LMS algorithm based on logarithmic function[J]. Journal of Wuhan University (Natural Science Edition), 2015, 61(3): 295-298(in Chinese).
https://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201503017.htm