1.
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention(MICCAI), Charm: Springer, 2015: 234-241.
2.
Zeng G, Yang X, Li J, et al. 3D U-net with multi-level deep supervision: fully automatic segmentation of proximal femur in 3D MR images// Machine Learning in Medical Imaging, Cham: Springer, 2017: 274-282.
3.
Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation// International Conference on 3D Vision (3DV), Stanford: IEEE, 2016: 565-571.
4.
Bouget D, Pedersen A, Hosainey S A M, et al Fast meningioma segmentation in T1-weighted magnetic resonance imaging volumes using a lightweight 3D deep learning architecture.
J Med Imaging (Bellingham)
2021;
8
(2):024002.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
5.
Ren J, Sun H, Zhao H, et al Effective extraction of ventricles and myocardium objects from cardiac magnetic resonance images with a multi-task learning U-net.
Pattern Recognit Lett.
2022;
155
:165–170. doi: 10.1016/j.patrec.2021.10.025.
[
CrossRef
]
[
Google Scholar
]
6.
Abulnaga S M, Rubin J. Ischemic stroke lesion segmentation in CT perfusion scans using pyramid pooling and focal loss// Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Cham: Springer, 2019: 352-363.
7.
Li F F, Fergus R, Perona P. A bayesian approach to unsupervised one-shot learning of object categories// Proceedings Ninth IEEE International Conference on Computer Vision, 2003, 2003(2): 1134-1141.
8.
Hospedales T, Antoniou A, Micaelli P, et al Meta-learning in neural networks: a survey.
IEEE Trans Pattern Anal Mach Intell.
2022;
44
(9):5149–5169.
[
PubMed
]
[
Google Scholar
]
9.
Zhao A, Balakrishnan G, Durand F, et al. Data augmentation using learned transformations for one-shot medical image segmentation// Computer Vision and Pattern Recognition (CVPR), Long Beach: IEEE, 2019: 8543-8553.
10.
Chartsias A, Papanastasiou G, Wang C, et al Disentangle, align and fuse for multimodal and semi-supervised image segmentation.
IEEE Trans Med Imaging.
2021;
40
(3):781–792. doi: 10.1109/TMI.2020.3036584.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Guo J, Odu A, Pedrosa I Deep learning kidney segmentation with very limited training data using a cascaded convolution neural network.
PLoS One.
2022;
17
(5):e0267753. doi: 10.1371/journal.pone.0267753.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Wang S, Cao S, Wei D, et al. Lt-net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation// Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020: 9159-9168.
13.
Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks// International Conference on Machine Learning, Sydney: PMLR, 2017: 1126-1135.
14.
Wang P, Chen P, Yuan Y, et al. Understanding convolution for semantic segmentation// IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe: IEEE, 2018: 1451-1460.
15.
Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention// International Conference on Machine Learning, Lille: PMLR, 2015: 2048-2057.
16.
Kennedy D N, Haselgrove C, Hodge S M, et al CANDIShare: a resource for pediatric neuroimaging data.
Neuroinformatics.
2012;
10
(3):319–322. doi: 10.1007/s12021-011-9133-y.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Balakrishnan G, Zhao A, Sabuncu M R, et al Voxelmorph: a learning framework for deformable medical image registration.
IEEE Trans Med Imaging.
2019;
38
(8):1788–1800. doi: 10.1109/TMI.2019.2897538.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]