添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

Pandas使用分隔符或正则表达式将字符串拆分为多列

作者:饺子大人

本文主要介绍了Pandas使用分隔符或正则表达式将字符串拆分为多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Pandas如何将带有字符串元素的列拆分为多个列。

使用以下字符串的方法。

  • str.split():用定界符分割
  • str.extract():按正则表达式拆分

字符串方法是pandas.Series方法。

适用于pandas.Series或pandas.DataFrame列

str.split():用定界符分割

要按定界符(delimiter)进行拆分,使用字符串方法str.split()。

pandas.Series

以以下pandas.Series为例。

import pandas as pd
s_org = pd.Series(['aaa@xxx.com', 'bbb@yyy.com', 'ccc@zzz.com', 'ddd'], index=['A', 'B', 'C', 'D'])
print(s_org)
print(type(s_org))
# A    aaa@xxx.com
# B    bbb@yyy.com
# C    ccc@zzz.com
# D            ddd
# dtype: object
# <class 'pandas.core.series.Series'>

将定界符指定为第一个参数。一个pandas.Series元素作为拆分字符串的列表返回。

s = s_org.str.split('@')
print(s)
print(type(s))
# A    [aaa, xxx.com]
# B    [bbb, yyy.com]
# C    [ccc, zzz.com]
# D             [ddd]
# dtype: object
# <class 'pandas.core.series.Series'>

指定split = True作为参数可分为多个列并以pandas.DataFrame的形式获取。默认值为expand = False。

没有足够的行划分的元素为“无(None)”。

df = s_org.str.split('@', expand=True)
print(df)
print(type(df))
#      0        1
# A  aaa  xxx.com
# B  bbb  yyy.com
# C  ccc  zzz.com
# D  ddd     None
# <class 'pandas.core.frame.DataFrame'>

可以在列中指定获取的pandas.DataFrame的列名。

df.columns = ['local', 'domain']
print(df)
#   local   domain
# A   aaa  xxx.com
# B   bbb  yyy.com
# C   ccc  zzz.com
# D   ddd     None

pandas.DataFrame

如果要通过将pandas.DataFrame的特定列拆分为多列来更新它,这会有些乏味。可能有更好的方法。

以先前创建的pandas.DataFrame为例。

print(df)
#   local   domain
# A   aaa  xxx.com
# B   bbb  yyy.com
# C   ccc  zzz.com
# D   ddd     None

在特定的列上使用str.split()获得一个拆分的pandas.DataFrame。

print(df['domain'].str.split('.', expand=True))
#       0     1
# A   xxx   com
# B   yyy   com
# C   zzz   com
# D  None  None

使用pd.concat()与原始pandas.DataFrame进行串联(联接),并使用drop()方法删除原始列。

df2 = pd.concat([df, df['domain'].str.split('.', expand=True)], axis=1).drop('domain', axis=1)
print(df2)
#   local     0     1
# A   aaa   xxx   com
# B   bbb   yyy   com
# C   ccc   zzz   com
# D   ddd  None  None

如果剩余的列很少,则只能选择与pd.concat()串联(联接)时所需的列。

df3 = pd.concat([df['local'], df['domain'].str.split('.', expand=True)], axis=1)
print(df3)
#   local     0     1
# A   aaa   xxx   com
# B   bbb   yyy   com
# C   ccc   zzz   com
# D   ddd  None  None

要重命名特定的列,请使用rename()方法。

df3.rename(columns={0: 'second_LD', 1: 'TLD'}, inplace=True)
print(df3)
#   local second_LD   TLD
# A   aaa       xxx   com
# B   bbb       yyy   com
# C   ccc       zzz   com
# D   ddd      None  None

Pandas.DataFrame的行名和列名的修改

str.extract():按正则表达式拆分

使用字符串方法str.extract()分割正则表达式。

以以下pandas.Series为例。

import pandas as pd
s_org = pd.Series(['aaa@xxx.com', 'bbb@yyy.com', 'ccc@zzz.com', 'ddd'], index=['A', 'B', 'C', 'D'])
print(s_org)
# A    aaa@xxx.com
# B    bbb@yyy.com
# C    ccc@zzz.com
# D            ddd
# dtype: object

在第一个参数中指定正则表达式。对于每个与正则表达式中用()括起来的组部分匹配的字符串,均对其进行划分。

提取多个组时,无论参数expand如何,都将返回pandas.DataFrame。

如果不匹配,则为NaN。

df = s_org.str.extract('(.+)@(.+)\.(.+)', expand=True)
print(df)
#      0    1    2
# A  aaa  xxx  com
# B  bbb  yyy  com
# C  ccc  zzz  com
# D  NaN  NaN  NaN
df = s_org.str.extract('(.+)@(.+)\.(.+)', expand=False)
print(df)
#      0    1    2
# A  aaa  xxx  com
# B  bbb  yyy  com
# C  ccc  zzz  com
# D  NaN  NaN  NaN

如果只有一组,则当参数expand = True时返回pandas.DataFrame,如果expand = False则返回pandas.Series。

df_single = s_org.str.extract('(\w+)', expand=True)
print(df_single)
print(type(df_single))
#      0
# A  aaa
# B  bbb
# C  ccc
# D  ddd
# <class 'pandas.core.frame.DataFrame'>
s = s_org.str.extract('(\w+)', expand=False)
print(s)
print(type(s))
# A    aaa
# B    bbb
# C    ccc
# D    ddd
# dtype: object
# <class 'pandas.core.series.Series'>

Expand = False是当前版本0.22.0中的默认值,但expand = True将是将来的默认值。

FutureWarning: currently extract(expand=None) means expand=False (return Index/Series/DataFrame) 
but in a future version of pandas this will be changed to expand=True (return DataFrame)

如果对正则表达式模式使用命名组(?P …),则该名称将按原样是列名。

df_name = s_org.str.extract('(?P<local>.*)@(?P<second_LD>.*)\.(?P<TLD>.*)', expand=True)
print(df_name)
#   local second_LD  TLD
# A   aaa       xxx  com
# B   bbb       yyy  com
# C   ccc       zzz  com
# D   NaN       NaN  NaN

如果要通过将pandas.DataFrame的特定列划分为多个列来进行更新,请参考上面的str.split()示例。使用pd.concat()连接(联接)原始的pandas.DataFrame并使用drop()方法删除原始的列。

到此这篇关于Pandas使用分隔符或正则表达式将字符串拆分为多列的文章就介绍到这了,更多相关Pandas 字符串拆分为多列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • Python pyinstaller库的安装配置教程分享
    Python pyinstaller库的安装配置教程分享
    2023-04-04
  • 一文详解如何实现PyTorch模型编译
    一文详解如何实现PyTorch模型编译
    2023-04-04
  • Python入门教程(二十四)Python的迭代器
    Python入门教程(二十四)Python的迭代器
    2023-04-04
  • 如何使用Python中的正则表达式处理html文件
    如何使用Python中的正则表达式处理html文件
    2023-04-04
  • NumPy之矩阵向量线性代数等操作示例
    NumPy之矩阵向量线性代数等操作示例
    2023-04-04
  • 出现module 'queue' has no attribute 'Queue'问题的解决
    出现module 'queue' h
    2023-04-04
  • Python中基本数据类型和常用语法归纳分享
    Python中基本数据类型和常用语法归纳分享
    2023-04-04
  • 如何使用Python中的正则表达式处理html文件
    如何使用Python中的正则表达式处理html文件
    2023-04-04
  • 美国设下计谋,用娘炮文化重塑日本,已影响至中国
    美国设下计谋,用娘炮文化重塑日本,已影响至中国
    2021-11-19
  • 时空伴随者是什么意思?时空伴随者介绍
    时空伴随者是什么意思?时空伴随者介绍
    2021-11-09
  • 工信部称网盘企业免费用户最低速率应满足基本下载需求,天翼云盘回应:坚决支持,始终
    工信部称网盘企业免费用户最低速率应满足基本下载需求,天翼云盘回应:坚决支持,始终
    2021-11-05
  • 2022年放假安排出炉:五一连休5天 2022年所有节日一览表
    2022年放假安排出炉:五一连休5天 2022年所有节日一览表
    2021-10-26
  • 电脑版 - 返回首页

    2006-2023 脚本之家 JB51.Net , All Rights Reserved.
    苏ICP备14036222号