什么是一致性
“数据一致”一般指的是:缓存中有数据,缓存的数据值=数据库中的值。但根据缓存中是有数据为依据,则“一致”可以包含两种情况:
1)缓存中有数据,缓存的数据值=数据库中的值。
2)缓存中本没有数据,数据库中的值=最新值(有请求查询数据库时,会将数据写入缓存,则变为上面的“一致”状态)。
“数据不一致”:缓存的数据值≠数据库中的值;缓存或者数据库中存在旧值,导致其他线程读到旧数据。
针对缓存更新问题,提出了一个旁路缓存的缓存更新套路,这个策略分为以下三种场景:
1)失效:应用程序先从缓存取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
2)命中:应用程序从缓存中取数据,取到后返回。
3)更新:先把数据存到数据库中,成功后,再让缓存失效。
不管是先删缓存再更新数据库还是先更新数据库再删缓存,如果删除缓存失败了都会导致缓存跟数据不一致问题!
[图片上传失败...(image-b48458-1658132460557)]
这里我们总结出六种方案,如下图
根据是否接收写请求,可以把缓存分成读写缓存和只读缓存。
只读缓存:只在缓存进行数据查找,即使用“更新数据库+删除缓存”策略。
读写缓存:需要在缓存中对数据进行增删改查,即使用“更新数据库+更新缓存”策略。
先写MySQL,再写Redis
请求 A、B 都是先写 MySQL,然后再写 Redis,在高并发情况下,如果请求 A 在写 Redis 时卡了一会,请求 B 已经依次完成数据的更新,就会出现图中的问题。
先写Redis,再写MySQL
请求 A 先删除缓存,可能因为卡顿,数据一直没有更新到 MySQL,导致两者数据不一致。
这种情况出现的概率比较大,因为请求 A 更新 MySQL 可能耗时会比较长,而请求 B 的前两步都是查询,会非常快。
先删除 Redis,再写 MySQL,再删除 Redis
1)缓存刚好自动失效;2)请求 B 从数据库查出 10,回写缓存的耗时,比请求 A 写数据库,并且删除缓存的还长。
对于第二个条件,我们都知道更新 DB 肯定比查询耗时要长,所以出现这个情况的概率很小,同时满足上述条件的情况更小。
先写 MySQL,通过 Binlog,异步更新 Redis
这种方案,主要是监听 MySQL 的 Binlog,然后通过异步的方式,将数据更新到 Redis,这种方案有个前提,查询的请求,不会回写 Redis。
这个方案,会保证 MySQL 和 Redis 的最终一致性,但是如果中途请求 B 需要查询数据,如果缓存无数据,就直接查 DB;如果缓存有数据,查询的数据也会存在不一致的情况。所以这个方案,是实现最终一致性的终极解决方案,但是不能保证实时性。
1、先写 Redis,再写 MySQL
这种方案,我肯定不会用,万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的;
我之前也见同学这么用过,如果写 DB 失败,对 Redis 进行逆操作,那如果逆操作失败呢,是不是还要搞个重试?
2、先写 MySQL,再写 Redis
对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做;
当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。
3、先删除 Redis,再写 MySQL
这种方式,我还真没用过,直接忽略吧。
4、先删除 Redis,再写 MySQL,再删除 Redis
这种方式虽然可行,但是感觉好复杂,还要搞个消息队列去异步删除 Redis。
5、先写 MySQL,再删除 Redis
比较推荐这种方式,删除 Redis 如果失败,可以再多重试几次,否则报警出来;
这个方案,是实时性中最好的方案,在一些高并发场景中,推荐这种。
6、先写 MySQL,通过 Binlog,异步更新 Redis
对于异地容灾、数据汇总等,建议会用这种方式,比如 binlog + kafka,数据的一致性也可以达到秒级;
纯粹的高并发场景,不建议用这种方案,比如抢购、秒杀等。
实时一致性方案:采用“先写 MySQL,再删除 Redis”的策略,这种情况虽然也会存在两者不一致,但是需要满足的条件有点苛刻,所以是满足实时性条件下,能尽量满足一致性的最优解。
最终一致性方案:采用“先写 MySQL,通过 Binlog,异步更新 Redis”,可以通过 Binlog,结合消息队列异步更新 Redis,是最终一致性的最优解。
只读缓存策略
只读缓存:新增数据时,直接写入数据库;更新(修改/删除)数据时,先删除缓存。后续访问这些增删改的数据时,会发生缓存缺失,进而查询数据库,更新缓存。
新增数据时 ,写入数据库;访问数据时,缓存缺失,查数据库,更新缓存(始终是处于“数据一致”的状态,不会发生数据不一致性问题)
更新(修改/删除)数据时,会有个时序问题:更新数据库与删除缓存的顺序(这个过程会发生数据不一致性问题)。
在更新数据的过程中,可能会有如下问题:
1)无并发请求下,其中一个操作失败的情况。
2)并发请求下,其他线程可能会读到旧值。
因此,要想达到数据一致性,需要保证两点:
1)无并发请求下,保证A和B步骤都能成功执行。
2)并发请求下,在A和B步骤的间隔中,避免或消除其他线程的影响。
接下来,我们针对有/无并发场景,进行分析并使用不同的策略。
1)无并发情况
无并发请求下,在更新数据库和删除缓存值的过程中,因为操作被拆分成两步,那么就很有可能存在“步骤1成功,步骤2失败” 的情况发生(由于单线程中步骤1和步骤2是串行执行的,不太可能会发生 “步骤2成功,步骤1失败” 的情况)。
(1) 先删除缓存,再更新数据库
1)把要删除的缓存值或者是要更新的数据库值暂存到消息队列中(例如使用Kafka消息队列)
2)当删除缓存值或者是更新数据库值成功时,把这些值从消息队列中去除,以免重复操作。
3)当删除缓存值或者是更新数据库值失败时,执行失败策略,重试服务从消息队列中重新读取这些值,然后再次进行删除或更新。
4)删除或者更新失败时,需要再次进行重试,重试超过的一定次数。向业务层发送报错信息。
b.订阅Binlog变更日志
1)创建更新缓存服务,接收数据变更的MQ消息,然后消费消息,更新/删除Redis中的缓存数据。
2)使用Binlog实时更新/删除Redis缓存。利用Canal,即将负责更新缓存的服务伪装成一个MySQL的从节点,从MySQL接收Binlog,解析Binlog之后,得到实时的数据变更信息,然后根据变更信息去更新/删除Redis缓存。
3)MQ+Canal策略,将Canal Server接收到的Binlog数据直接投递到MQ进行解耦,使用MQ异步消费Binlog日志,以此进行数据同步。
不管用MQ/Canal或者MQ+Canal的策略来异步更新缓存,对整个更新服务的数据可靠性和实时性要求都比较高,如果产生数据丢失或者更新延时情况,会造成MySQL和Redis中的数据不一致。因此,使用这种策略时,需要考虑出现不同步问题时的降级或补偿方案。
高并发情况
使用以上策略后,可以保证在单线程/无并发场景下的数据一致性。但是,在高并发场景下,由于数据库层面的读写并发,会引发的数据库与缓存数据不一致的问题(本质是后发生的读请求先返回了)
(1) 先删除缓存,再更新数据库
假设线程A删除缓存值后,由于网络延迟等原因导致未及更新数据库,而此时,线程B开始读取数据时会发现缓存缺失,进而去查询数据库。而当线程B从数据库读取完数据、更新了缓存后,线程A才开始更新数据库,此时,会导致缓存中的数据是旧值,而数据库中的是最新值,产生“数据不一致”。其本质就是,本应后发生的“B线程-读请求”先于“A线程-写请求”执行并返回了。
解决策略:设置缓存过期时间+延时双删
通过设置缓存过期时间,若发生上述淘汰缓存失败的情况,则在缓存过期后,读请求仍然可以从DB中读取最新数据并更新缓存,可减小数据不一致的影响范围。虽然在一定时间范围内数据有差异,但可以保证数据的最终一致性。
此外,还可以通过延时双删进行保障:在线程A更新完数据库值以后,让它先sleep一小段时间,确保线程B能够先从数据库读取数据,再把缺失的数据写入缓存,然后,线程A再进行删除。后续其它线程读取数据时,发现缓存缺失,会从数据库中读取最新值。
redis.delKey(X)
db.update(X)
Thread.sleep(N)
redis.delKey(X)
sleep时间:在业务程序运行的时候,统计下线程读数据和写缓存的操作时间,以此为基础来进行估算。
注意:如果难以接受sleep这种写法,可以使用延时队列进行替代。
先删除缓存值再更新数据库,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力,也就是缓存穿透的问题。针对缓存穿透问题,可以用缓存空结果、布隆过滤器进行解决。
(2) 先更新数据库,再删除缓存
如果线程A更新了数据库中的值,但还没来得及删除缓存值,线程B就开始读取数据了,那么此时,线程B查询缓存时,发现缓存命中,就会直接从缓存中读取旧值。其本质也是,本应后发生的“B线程-读请求”先于“A线程-删除缓存”执行并返回了。
凭借经验发送「延迟消息」到队列中,延迟删除缓存,同时也要控制主从库延迟,尽可能降低不一致发生的概率。
b.订阅binlog,异步删除
通过数据库的binlog来异步淘汰key,利用工具(canal)将binlog日志采集发送到MQ中,然后通过ACK机制确认处理删除缓存。
c.删除消息写入数据库
通过比对数据库中的数据,进行删除确认 先更新数据库再删除缓存,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力,也就是缓存穿透的问题。针对缓存穿透问题,可以用缓存空结果、布隆过滤器进行解决。
更新数据时,加写锁;查询数据时,加读锁。
优先使用“先更新数据库再删除缓存”的执行时序,原因主要有两个:
1)先删除缓存值再更新数据库,有可能导致请求因缓存缺失而访问数据库,给数据库带来压力。
2)业务应用中读取数据库和写缓存的时间有时不好估算,进而导致延迟双删中的sleep时间不好设置。
针对读写缓存(更新数据库+更新缓存)
读写缓存:增删改在缓存中进行,并采取相应的回写策略,同步数据到数据库中。
同步直写:使用事务,保证缓存和数据更新的原子性,并进行失败重试(如果Redis本身出现故障,会降低服务的性能和可用性)
异步回写:写缓存时不同步写数据库,等到数据从缓存中淘汰时,再写回数据库(没写回数据库前,缓存发生故障,会造成数据丢失)
该策略在秒杀场中有见到过,业务层直接对缓存中的秒杀商品库存信息进行操作,一段时间后再回写数据库。
一致性:同步直写>异步回写,因此,对于读写缓存,要保持数据强一致性的主要思路是:利用同步直写,同步直写也存在两个操作的时序问题:更新数据库和更新缓存。
无并发情况
强一致性策略
上述策略只能保证数据的最终一致性。要想做到强一致,最常见的方案是2PC、3PC、Paxos、Raft这类一致性协议,但它们的性能往往比较差,而且这些方案也比较复杂,还要考虑各种容错问题。如果业务层要求必须读取数据的强一致性,可以采取以下策略:
1)暂存并发读请求
在更新数据库时,先在Redis缓存客户端暂存并发读请求,等数据库更新完、缓存值删除后,再读取数据,从而保证数据一致性。
2)串行化
读写请求入队列,工作线程从队列中取任务来依次执行
(1)修改服务Service连接池,id取模选取服务连接,能够保证同一个数据的读写都落在同一个后端服务上。
(2)修改数据库DB连接池,id取模选取DB连接,能够保证同一个数据的读写在数据库层面是串行的。
(3)使用Redis分布式读写锁
将淘汰缓存与更新库表放入同一把写锁中,与其它读请求互斥,防止其间产生旧数据。读写互斥、写写互斥、读读共享,可满足读多写少的场景数据一致,也保证了并发性。并根据逻辑平均运行时间、响应超时时间来确定过期时间。
public void write() {
Lock writeLock = redis.getWriteLock(lockKey);
writeLock.lock();
try {
redis.delete(key);
db.update(record);
} finally {
writeLock.unlock();
public void read() {
if (caching) {
return;
// no cache
Lock readLock = redis.getReadLock(lockKey);
readLock.lock();
try {
record = db.get();
} finally {
readLock.unlock();
redis.set(key, record);
较为通用的一致性策略拟定:
在并发场景下,使用“更新数据库+更新缓存”需要用分布式锁保证缓存和数据一致性,且可能存在“缓存资源浪费”和“机器性能浪费”的情况;一般推荐使用“更新数据库+删除缓存”的方案。如果根据需要,热点数据较多,可以使用“更新数据库+更新缓存”策略。
在“更新数据库+删除缓存”的方案中,推荐使用推荐用“先更新数据库,再删除缓存”策略,因为先删除缓存可能会导致大量请求落到数据库,而且延迟双删的时间很难评估。
在“先更新数据库,再删除缓存”策略中,可以使用“消息队列+重试机制”的方案保证缓存的删除。并通过“订阅binlog”进行缓存比对,加上一层保障。
此外,需要通过初始化缓存预热、多数据源触发、延迟消息比对等策略进行辅助和补偿。【多种数据更新触发源:定时任务扫描,业务系统MQ、binlog变更MQ,相互之间作为互补来保证数据不会漏更新】
需要注意的其他问题
1)k-v大小的合理设置
Redis key大小设计:由于网络的一次传输MTU最大为1500字节,所以为了保证高效的性能,建议单个k-v大小不超过1KB,一次网络传输就能完成,避免多次网络交互;k-v是越小性能越好。
Redis热key:当业务遇到单个读热key,通过增加副本来提高读能力或是用hashtag把key存多份在多个分片中。
当业务遇到单个写热key,需业务拆分这个key的功能,属于设计不合理-当业务遇到热分片,即多个热key在同一个分片上导致单分片cpu高,可通过hashtag方式打散。
2)避免其他问题导致缓存服务器崩溃,进而简直导致数据一致性策略失效缓存穿透、缓存击穿、缓存雪崩、机器故障等问题
先写 Redis,再写 MySQL
这种方案,我肯定不会用,万一 DB 挂了,你把数据写到缓存,DB 无数据,这个是灾难性的;
我之前也见同学这么用过,如果写 DB 失败,对 Redis 进行逆操作,那如果逆操作失败呢,是不是还要搞个重试?
先写 MySQL,再写 Redis
对于并发量、一致性要求不高的项目,很多就是这么用的,我之前也经常这么搞,但是不建议这么做;
当 Redis 瞬间不可用的情况,需要报警出来,然后线下处理。
先删除 Redis,再写 MySQL
这种方式,我还真没用过,直接忽略吧。
先删除 Redis,再写 MySQL,再删除 Redis
这种方式虽然可行,但是感觉好复杂,还要搞个消息队列去异步删除 Redis。
先写 MySQL,再删除 Redis