格式:n=norm(A,p)
功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数
以下是Matlab中help norm 的解释
NORM Matrix or vector norm.
For matrices...
NORM(X) is the largest singular value of X, max(svd(X)).
NORM(X,2) is the same as NORM(X).
NORM(X,1) is the 1-norm of X, the largest column sum,
= max(sum(abs(X))).
NORM(X,inf) is the infinity norm of X, the largest row sum,
= max(sum(abs(X'))).
NORM(X,'fro') is the Frobenius norm, sqrt(sum(diag(X'*X))).
NORM(X,P) is available for matrix X only if P is 1, 2, inf or 'fro'.
For vectors...
NORM(V,P) = sum(abs(V).^P)^(1/P).
NORM(V) = norm(V,2).
NORM(V,inf) = max(abs(V)).
NORM(V,-inf) = min(abs(V)).
1、如果A为矩阵
n=norm(A) 《Simulink与信号处理》
返回A的最大奇异值,即max(svd(A))
n=norm(A,p)
根据p的不同,返回不同的值
返回min(abs(A))
矩阵 (向量) 的范数运算
为了反映了矩阵 (向量) 某些特性,线性代数中引入了范数的概念,它分为2-范数,1-范数,无穷范数和Frobenius范数等.在MATLAB中,用函数norm( )或normest( ) 计算矩阵 (向量) 的范数.其使用格式如下.
norm(X) —— 计算矩阵 (向量) X的2-范数;
norm(X,2) —— 同上;
norm(X,1) —— 计算矩阵 (向量) X的1-范数;
norm(X,inf) —— 计算矩阵 (向量) X的无穷范数;
norm(X,'fro') —— 计算矩阵 (向量) X的Frobenius范数;
normest(X) —— 只计算矩阵 (向量) X的2-范数;并且是2-范数的估计值,适用于计算norm(X)比较费时的情况.
范数
(norm),是具有“长度”概念的函数。在
线性代数
、
泛函分析
及相关的数学领域,是一个
函数
,其为
向量空间
内的所有
向量
赋予非零的正
长度
或
大小
。半范数反而可以为非零的
向量
赋予零长度。
举一个简单的例子,一个二维度的欧氏几何空间
就有欧氏范数。在这个
向量空间
的元素(譬如:(3,7))常常在
笛卡儿坐标系统
被画成一个从原点出发的箭号。每一个
向量
的欧氏范数就是箭号的长度。
拥有范数的
向量空间
就是
赋范向量空间
。同样,拥有半范数的
向量空间
就是赋半范向量空间。