Abstract:
An electrode material for electrochemical energy storage is one of the key components for high performance devices. In a variety of electrochemical energy storage systems, carbon materials, especially the lately emerged carbon nanomaterials including the carbon nanotube and graphene, have been playing a very important role and brought new vitality to the development and demonstration of the broad application prospects. In this review, we summarize the applications of various carbon materials in the typical electrochemical energy storage devices, namely lithium/sodium ion batteries, supercapacitors, and lithium-sulfur batteries, as well as flexible electrochemical energy storage and electrochemical catalysis. A perspective of novel carbon materials for the future energy storage and conversion will be drawn.
Key words:
carbon,
electrochemistry,
energy storage,
catalysis,
lithium-sulfur,
oxygen reduction
[1] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[2] Wen L, Li F, Luo H Z, et al. Graphene for flexible lithium-ion batteries: Development and prospects[M]. Nanocarbons for Advanced Energy Storage, Wiley, 2015, DOI:
10.1002/9783527680054.ch5.
[3] Geim A K, Novoselov K S. The rise of graphene[L]
.
Nature Materials, 2007, 6(3): 183-191.
[4] Choi N S, Chen Z H, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie-International Edition, 2012, 51(40): 9994-10024.
[5] Wen L(闻雷), Song R S(宋仁升), Shi Y(石颖), et al. Lithium storage characteristics and possible applications of graphene materials[J]
.
Acta Chimica Sinica(化学学报), 2014, 72(3): 333-344.
[6] Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236): 590-593.
[7] de las Casas C, Li W Z. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources, 2012, 208: 74-85.
[8] Pan D Y, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets[J]. Chemistry of Materials, 2009, 21(14): 3136-3142.
[9] Wu Y, Wang J P, Jiang K L, et al. Applications of carbon nanotubes in high performance lithium ion batteries[J]. Frontiers of Physics, 2014, 9(3): 351-369.
[10] Spahr M E, Goers D, Leone A, et al. Development of carbon conductive additives for advanced lithium ion batteries[J]. Journal of Power Sources, 2011, 196(7): 3404-3413.
[11] Wang Q, Su F Y, Tang Z Y, et al. Synergetic effect of conductive additives on the performance of high power lithium ion batteries[J]. New Carbon Materials, 2012, 27(6): 427-432.
[12] Liu C, Cheng H M, Carbon nanotubes: Controlled growth and application[J]. Materials Today, 2013, 16(1/2): 19-28.
[13] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs)—Basic properties and their battery applications[J]. Carbon, 2001, 39(9): 1287-1297.
[14] Zhang Q, Huang J Q, Qian W Z, et al. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9(8): 1237-1265.
[15] Sun Y Q, Wu Q O, Shi G Q, Graphene based new energy materials[J]
.
Energy & Environmental Science, 2011, 4(4): 1113-1132.
[16] Wu Z S, Zhou G M, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107-131.
[17] Kim S W, Seo D H, Ma X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]
.
Advanced Energy Materials, 2012, 2(7): 710-721.
[18] Wang L P, Yu L, Wang X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9353-9378.
[19] Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
[20] Thomas P, Ghanbaja J, Billaud D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO
4
-ethylene carbonate electrolyte[J]. Electrochimica Acta, 1999, 45(3): 423-430.
[21] Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787.
[22] Alcantara R, Lavela P, Ortiz G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4): A222-A225.
[23] Li Y M, Xu S Y, Wu X Y, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(1): 71-77.
[24] Alcantara R, Jimenez-Mateos J M, Lavela P, et al. Carbon black: A promising electrode material for sodium-ion batteries[J]. Electrochemistry Communications, 2001, 3(11): 639-642.
[25] Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9): 3342-3345.
[26] Shukla A K, Banerjee A, Ravikumar M K, et al. Electrochemical capacitors: Technical challenges and prognosis for future markets[J]. Electrochimica Acta, 2012. 84: 165-173.
[27] Simon P, Gogotsi . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[28] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[29] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850.
[30] Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie-International Edition, 2008, 47(2): 373-376.
[31] Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems[J]. Accounts of Chemical Research, 2013, 46(5): 1094-1103.
[32] Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications[J]. Energy & Environmental Science, 2011, 4(5): 1592-1605.
[33] Li X, Wei B Q. Supercapacitors based on nanostructured carbon[J]. Nano Energy, 2013, 2(2): 159-173.
[34] Revo S L, Budzulyak I M, Rachiy B I, et al. Electrode material for supercapacitors based on nanostructured carbon[J]. Surface Engineering and Applied Electrochemistry, 2013, 49(1): 68-72.
[35] Mahmood N, Zhang C Z, Yin H, et al. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(1): 15-32.
[36] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
[37] Huang Y, Liang J J, Chen Y S. An overview of the applications of graphene-based materials in supercapacitors[J]
.
Small, 2012, 8(12): 1805-1834.
[38] Wu D C, Xu F, Sun B, et al. Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112(7): 3959-4015.
[39] Zhang C, Lv W, Tao Y, et al. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8(5): 1390-1403.
[40] Weng Z, Li F, Wang D W, et al. Controlled electrochemical charge injection to maximize the energy density of supercapacitors[J]. Angewandte Chemie-International Edition, 2013, 52(13): 3722-3725.
[41] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O
2
and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[42] Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
[43] Wang D W, Zeng Q C, Zhou G M, et al. Carbon-sulfur composites for Li-S batteries: Status and prospects[J]. Journal of Materials Chemistry A, 2013, 1(33): 9382-9394.
[44] Li Z, Huang Y M, Yuan L X, et al. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2015, 92: 41-63.
[45] Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]
.
Energy Storage Materials, 2015, DOI: 10.1016/j.ensm.2015.09.007.
[46] Zhang Q, Cheng X B, Huang J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]
.
New Carbon Materials, 2014, 29(4): 241-264.
[47] Zhou G M, Pei S F, Li L, et al. A Graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(4): 625-631.
[48] Jia Q, Huang Q, Wei F. Multifunctional interlayer/separator system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy storage materials, 2015: DOI: 10.1016/j.ensm.2015.09.008.
[49] Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270.
[50] Ji X, Lee K T, Nazar L F, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[51] Jeong G, Kim Y U, Kim H, et al. Prospective materials and applications for Li secondary batteries[J]. Energy & Environmental Science, 2011, 4(6): 1986-2002.
[52] Zhou G M, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science, 2014.
7
(4): 1307-1338.
[53]. Wen L(闻雷), Chen J(陈静), Luo H Z(罗洪泽), et al. Graphene for flexible lithium-ion batteries: Applications and prospects[J]. Chinese Science Bulletin(科学通报), 2015, 60(7): 630-644.
[54] Zhou G M, Li L, Ma C Q, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11: 356-365.
[55] Liang J, Zhou R, Hulicova-Jurcakova D, et al. Carbon materials and their energy conversion and storage applications[M]//Luque R, Balu A M, Eds. Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials. London: CRC Press, 2013: 59-94.
[56] Liang J, Qiao S Z, Lu G Q, et al. Chapter 18—Carbon-based catalyst support in fuel cell applications[M]//Tascon J M D, Ed. Novel Carbon Adsorbents. Amsterdam: Elsevier, 2012: 549-581.
[57] Li H Q, Wang Y G, Wang C X, et al. A competitive candidate material for aqueous supercapacitors: High surface-area graphite[J]. Journal of Power Sources, 2008, 185(2): 1557-1562.
[58] Hung C C, Lim P Y, Chen J R, et al. Corrosion of carbon support for PEM fuel cells by electrochemical quartz crystal microbalance[J]. Journal of Power Sources, 2011, 196(1): 140-146.
[59] Coloma F, Sepulvedaescribano A, Rodriguezreinoso F. Heat-treated carbon-blacks as supports for platinum catalysts[J]. Journal of Catalysis, 1995, 154(2): 299-305.
[60] Yu X Y, Ye S Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst[J]. Journal of Power Sources, 2007, 172(1): 133-144.
[61] Tran T D, Langer S H. Graphite pre-treatment for deposition of platinum catalysts[J]. Electrochimica Acta, 1993, 38(11): 1551-1554.
[62] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
[63] Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Advanced Materials, 2013, 25(43): 6226-6231.
[64] Yang Z, Yao Z, Li G F, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211.
[65] Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O
2
reduction in an alkaline medium[J]. Angewandte Chemie International Edition, 2011, 50(14): 3257-3261.
[66] Yao Z, Nie H G, Yang Z, et al. Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium[J]. Chemical Communications, 2012, 48(7): 1027-1029.
[67] Bo X G, Guo L P. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2459-2465.
[68] Zheng Y, Jiao Y, Ge L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition, 2013, 52(11): 3110-3116.
[69] Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500.
[70] Liang J, Zhou R F, Chen X M, et al. Fe-N Decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction[J]. Advanced Materials, 2014, 26(35): 6074-6079.
[71] Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C
3
N
4
/carbon composite electrocatalyst[J]. Angewandte Chemie International Edition, 2012, 51(16): 3892-3896.
[72] Zheng Y, Jiao Y, Zhu Y H, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications, 2014, 5: Article No. 3783.
[73] Wei G J, Fan X Z, Liu J G, et al. A review of the electrochemical activity of carbon Materials in vanadium redox flow batteries[J]. New Carbon Materials, 2014, 29(4): 272-279.
[74] Wang J J, Li Y L, Sun X L, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries[J]. Nano Energy, 2013, 2(4): 443-467.
[75] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[76] Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]
.
Current Opinion in Solid State & Materials Science, 2012, 16(4): 168-177.
[77] Lin M C, Gong M, Lu B G, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 325-328.
崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平.
单层石墨烯微米尺度图案化和功能化:调控电子传输特性
[J]. 电化学(中英文), 2024, 30(3): 2305251-.
马俊博, 林生, 林志群, 孙岚, 林昌健.
太阳能光(电)催化固氮研究进展
[J]. 电化学(中英文), 2024, 30(3): 2314003-.
万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武.
单分散Cu-TCPP/Cu
2
O杂化微球:一种具有优异电还原CO
2
产C
2
性能的级联电催化剂
[J]. 电化学(中英文), 2024, 30(1): 2303271-.
陈浩杰, 唐美华, 陈胜利.
质子交换膜燃料电池阴极催化层疏水性优化
[J]. 电化学(中英文), 2023, 29(9): 2207061-.
梁志豪, 王家正, 王丹, 周剑章, 吴德印.
陷阱态对Ag-TiO
2
光诱导界面电荷转移的影响:电化学、光电化学和光谱表征
[J]. 电化学(中英文), 2023, 29(8): 2208101-.
谭卓, 李凯旋, 毛秉伟, 颜佳伟.
电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例
[J]. 电化学(中英文), 2023, 29(7): 2216003-.
郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢.
一体式可再生燃料电池双功能氧催化剂的研究进展
[J]. 电化学(中英文), 2023, 29(7): 2205301-.
胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利.
基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究
[J]. 电化学(中英文), 2023, 29(6): 2218001-.
覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰.
金属有机框架材料在电化学/电化学发光免疫分析中的应用
[J]. 电化学(中英文), 2023, 29(6): 2218003-.
静超, 龙亿涛.
暗场显微镜下的彩色“纳米星”
[J]. 电化学(中英文), 2023, 29(6): 2218006-.
张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉.
通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移
[J]. 电化学(中英文), 2023, 29(6): 2218005-.
陈涛, 许元红, 李景虹.
基于电化学阻抗谱的致病菌检测传感器的研究进展
[J]. 电化学(中英文), 2023, 29(6): 2218002-.
丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌.
CeO
2
电子调控FeNi纳米片大电流密度电解水催化剂
[J]. 电化学(中英文), 2023, 29(5): 2208121-.
杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷.
高性能锂硫电池用钴/碳复合材料硫宿主
[J]. 电化学(中英文), 2023, 29(4): 2217003-.
张修庆, 唐帅, 付永柱.
锂硫电池电解液功能性添加剂研究进展
[J]. 电化学(中英文), 2023, 29(4): 2217005-.