添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

07_pandas.DataFrame的for循环处理(迭代)

当使用for语句循环(迭代)pandas.DataFrame时,简单的使用for语句便可以取得返回列名,因此使用重复使用for方法,便可以获取每行的值。

以下面的pandas.DataFrame为例。

import pandas as pd
df = pd.DataFrame({'age': [24, 42], 'state': ['NY', 'CA'], 'point': [64, 92]},
                  index=['Alice', 'Bob'])
print(df)
#        age state  point
# Alice   24    NY     64
# Bob     42    CA     92

在此对以下内容进行说明:

  • pandas.DataFrame for循环的应用
  • 逐列检索
    • DataFrame.iteritems()
  • 逐行检索
    • DataFrame.iterrows()
    • DataFrame.itertuples()
  • 检索特定列的值
  • 循环更新值

pandas.DataFrame for循环的应用

当pandas.DataFrame直接使用for循环时,按以下顺序获取列名(列名)。

for column_name in df:
    print(type(column_name))
    print(column_name)
    print('======\n')
# <class 'str'>
# age
# ======
# <class 'str'>
# state
# ======
# <class 'str'>
# point
# ======

调用方法__iter __()。

for column_name in df.__iter__():
    print(type(column_name))
    print(column_name)
    print('======\n')
# <class 'str'>
# age
# ======
# <class 'str'>
# state
# ======
# <class 'str'>
# point
# ======

DataFrame.iteritems()

使用iteritems()方法,您可以一一获取列名称(列名称)和元组(列名称,系列)的每个列的数据(pandas.Series类型)。

pandas.Series可以通过指定索引名称等来检索行的值。

for column_name, item in df.iteritems():
    print(type(column_name))
    print(column_name)
    print('~~~~~~')
    print(type(item))
    print(item)
    print('------')
    print(item['Alice'])
    print(item[0])
    print(item.Alice)
    print('======\n')
# <class 'str'>
# age
# ~~~~~~
# <class 'pandas.core.series.Series'>
# Alice    24
# Bob      42
# Name: age, dtype: int64
# ------
# ======
# <class 'str'>
# state
# ~~~~~~
# <class 'pandas.core.series.Series'>
# Alice    NY
# Bob      CA
# Name: state, dtype: object
# ------
# ======
# <class 'str'>
# point
# ~~~~~~
# <class 'pandas.core.series.Series'>
# Alice    64
# Bob      92
# Name: point, dtype: int64
# ------
# ======

一次检索一行的方法包括iterrows()和itertuples()。 itertuples()更快。

如果只需要特定列的值,则如下所述,指定列并将它们分别在for循环中进行迭代会更快。

DataFrame.iterrows()

通过使用iterrows()方法,可以获得每一行的数据(pandas.Series类型)和行名和元组(索引,系列)。

pandas.Series可以通过指定列名等来检索列的值。

for index, row in df.iterrows():
    print(type(index))
    print(index)
    print('~~~~~~')
    print(type(row))
    print(row)
    print('------')
    print(row['point'])
    print(row[2])
    print(row.point)
    print('======\n')
# <class 'str'>
# Alice
# ~~~~~~
# <class 'pandas.core.series.Series'>
# age      24
# state    NY
# point    64
# Name: Alice, dtype: object
# ------
# ======
# <class 'str'>
# Bob
# ~~~~~~
# <class 'pandas.core.series.Series'>
# age      42
# state    CA
# point    92
# Name: Bob, dtype: object
# ------
# ======

DataFrame.itertuples()

使用itertuples()方法,可以一一获取索引名(行名)和该行数据的元组。元组的第一个元素是索引名称。

默认情况下,返回一个名为Pandas的namedtuple。由于它是namedtuple,因此可以访问每个元素的值。

for row in df.itertuples():
    print(type(row))
    print(row)
    print('------')
    print(row[3])
    print(row.point)
    print('======\n')
# <class 'pandas.core.frame.Pandas'>
# Pandas(Index='Alice', age=24, state='NY', point=64)
# ------
# ======
# <class 'pandas.core.frame.Pandas'>
# Pandas(Index='Bob', age=42, state='CA', point=92)
# ------
# ======

如果参数name为None,则返回一个普通的元组。

for row in df.itertuples(name=None):
    print(type(row))
    print(row)
    print('------')
    print(row[3])
    print('======\n')
# <class 'tuple'>
# ('Alice', 24, 'NY', 64)
# ------
# ======
# <class 'tuple'>
# ('Bob', 42, 'CA', 92)
# ------
# ======

检索特定列的值

上述的iterrows()和itertuples()方法可以检索每一行中的所有列元素,但是如果仅需要特定的列元素,可以使用以下方法。

pandas.DataFrame的列是pandas.Series。

print(df['age'])
# Alice    24
# Bob      42
# Name: age, dtype: int64
print(type(df['age']))
# <class 'pandas.core.series.Series'>

如果将pandas.Series应用于for循环,则可以按顺序获取值,因此,如果指定pandas.DataFrame列并将其应用于for循环,则可以按顺序获取该列中的值。

for age in df['age']:
    print(age)

如果使用内置函数zip(),则可以一次收集多列值。

for age, point in zip(df['age'], df['point']):
    print(age, point)
# 24 64
# 42 92

如果要获取索引(行名),使用index属性。如以上示例所示,可以与其他列一起通过zip()获得。

print(df.index)
# Index(['Alice', 'Bob'], dtype='object')
print(type(df.index))
# <class 'pandas.core.indexes.base.Index'>
for index in df.index:
    print(index)
# Alice
# Bob
for index, state in zip(df.index, df['state']):
    print(index, state)
# Alice NY
# Bob CA

循环更新值

iterrows()方法逐行检索值,返回一个副本,而不是视图,因此更改pandas.Series不会更新原始数据。

for index, row in df.iterrows():
    row['point'] += row['age']
print(df)
#        age state  point
# Alice   24    NY     64
# Bob     42    CA     92

at[]选择并处理原始DataFrame中的数据时更新。

for index, row in df.iterrows():
    df.at[index, 'point'] += row['age']
print(df)
#        age state  point
# Alice   24    NY     88
# Bob     42    CA    134

有关at[]的文章另请参考以下连接。

04_Pandas获取和修改任意位置的值(at,iat,loc,iloc)

请注意,上面的示例使用at[]只是一个示例,在许多情况下,有必要使用for循环来更新元素或基于现有列添加新列,for循环的编写更加简单快捷。

与上述相同的处理。上面更新的对象被进一步更新。

df['point'] += df['age']
print(df)
#        age state  point
# Alice   24    NY    112
# Bob     42    CA    176

可以添加新列。

df['new'] = df['point'] + df['age'] * 2
print(df)
#        age state  point  new
# Alice   24    NY    112  160
# Bob     42    CA    176  260

除了简单的算术运算之外,NumPy函数还可以应用于列的每个元素。以下是平方根的示例。另外,这里,NumPy的功能可以通过pd.np访问,但是,当然可以单独导入NumPy。

df['age_sqrt'] = pd.np.sqrt(df['age'])
print(df)
#        age state  point  new  age_sqrt
# Alice   24    NY    112  160  4.898979
# Bob     42    CA    176  260  6.480741

对于字符串,提供了用于直接处理列(系列)的字符串方法。下面是转换为小写并提取第一个字符的示例。

df['state_0'] = df['state'].str.lower().str[0]
print(df)
#        age state  point  new  age_sqrt state_0
# Alice   24    NY    112  160  4.898979       n
# Bob     42    CA    176  260  6.480741       c
                    07_pandas.DataFrame的for循环处理(迭代)当使用for语句循环(迭代)pandas.DataFrame时,简单的使用for语句便可以取得返回列名,因此使用重复使用for方法,便可以获取每行的值。以下面的pandas.DataFrame为例。import pandas as pddf = pd.DataFrame({'age': [24, 42], 'state': [...
        return x/acidity_max
    X[i] =X[i].map(transform)str2float 法1: 
把每一列中的字符串转换成int类型race=X['race'].unique()
import numpy as np
import pandas as pd
data = {'city': ['Beijing', 'Shanghai', 'Guangzhou', 'Shenzhen', 'Hangzhou', 'Chongqing'],
    'year': [2016,2016,2015,2017,2016, 2016],
    'population': [2100, 2300, 1000, 700, 500, 500]}
frame = pd.DataFrame(data, columns = ['year', 'city', 'populat
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql import SQLContext
from pyspark import SparkContext
#初始化数据
#初始化pandas DataFrame
df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], index=['row1', 'row2'], columns=['c1', 'c2', 'c3'])
#打印数据
				
pandasdataframe可以一维格式化的二维数据,是一个很清晰数据表, 那你知道如何遍历这个数据表吗?本文介绍pandas遍历dataframe方法:1、使用df.iterrows()获取可迭代对象, 然后使用for循环遍历;2、使用applymap()函数遍历dataframe所有元素;3、按行遍历迭代成元组。 方法一:使用df.iterrows()获取可迭代对象, 然后使用for循环遍历即可 for index, row in df.iterrows(): print(index, ro
那么可以用pythonpandas库来实现。 pandasdataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码: import pandas as pd data = [[...
pandas.DataFrame(output_10.detach().numpy()) 输出的类型是 pandas 数据帧。 pandas 是一个用于数据分析的开源库。数据帧是 pandas 中用于存储表格数据的数据结构。它由一个二维结构组成,其中有行和列。每一行代表一个观察值,每一列代表一个变量。 output_10.detach().numpy() 的输出类型是 numpy 数组。numpy 是一个用于进行科学计算的 Python 库,它提供了许多用于操作数组的函数和方法。数组是 numpy 中的主要数据结构,它由一个类似于 Python 列表的多维数据集合组成。 因此,pandas.DataFrame(output_10.detach().numpy()) 输出的是一个从 numpy 数组转换而来的 pandas 数据帧。