添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
已经证明,如果是连续的,并且待求的零点是孤立的,那么在零点周围存在一个区域,只要初始值位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果不为0, 那么牛顿法将具有 平方收敛 的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的 有效数字 将增加一倍。
迭代法 也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是 直接法 (或者称为一次解法),即一次性解决问题。 迭代算法 是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做 重复性 操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量
在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用 递推 或倒推的方法来完成。
三、对迭代过程进行控制
在什么时候结束迭代过程是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的 迭代次数 是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。

牛顿迭代法 欧几里德算法

最经典的迭代算法是 欧几里德算法 ,用于计算两个整数a,b的 最大公约数 。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b。假设d是a,b的一个 公约数 ,则有 a%d==0,b%d==0,而r = a - kb,因此r%d==0 ,因此d是(b,a mod b)的公约数
同理,假设d 是(b,a mod b)的公约数,则 b%d==0,r%d==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德算法就是根据这个原理来做的,欧几里德算法又叫 辗转相除法 ,它是一个反复迭代执行,直到 余数 等于0停止的步骤,这实际上是一个 循环结构 。其算法用C语言描述为:
从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b;根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。