什么是Future接口
Future是java.util.concurrent.Future,是Java提供的接口,可以用来做异步执行的状态获取,它避免了异步任务在调用者那里阻塞等待,而是让调用者可以迅速得到一个Future对象,
后续可以通过Future的方法来获取执行结果。一个实例代码如下:
1 public class Test {
2 public static void main(String[] args) throws ExecutionException, InterruptedException {
3 //创建线程池
4 ExecutorService executor = Executors.newCachedThreadPool();
5 Future future = executor.submit(new Task());
6 //这一步get会阻塞当前线程
7 System.out.println(future.get());
9 executor.shutdown();
10 }
12 private static class Task implements Callable<Integer> {
14 @Override
15 public Integer call() throws Exception {
16 System.out.println("子线程在进行计算");
17 Thread.sleep(2000);
18 return 1;
19 }
21 }
代码很简单,就是将一个Runnable、Callable的实例放到一个线程池里,就会返回一个Future对象。后续通过future.get()取得执行结果,但事实上代码并没有达到异步回调的结果,而是get时阻塞了。
Future原理
因为阅读源码东西太对,这里只是总结关键点,说太多也记不住,先看ExecutorService的submit接口定义,代码如下:
1 * @param task the task to submit
2 * @param <T> the type of the task's result
3 * @return a Future representing pending completion of the task
4 * @throws RejectedExecutionException if the task cannot be
5 * scheduled for execution
6 * @throws NullPointerException if the task is null
8 <T> Future<T> submit(Callable<T> task);
简单分析:
入参是callable的实例,这个没用疑问
返回参数是Future对象
看代码实现类AbstractExecutorService:
1 public Future<?> submit(Runnable task) {
2 if (task == null) throw new NullPointerException();
3 RunnableFuture<Void> ftask = newTaskFor(task, null);
4 execute(ftask);
5 return ftask;
1 public FutureTask(Runnable runnable, V result) {
2 this.callable = Executors.callable(runnable, result);
3 this.state = NEW; // ensure visibility of callable
新建了一个FutureTask对象,状态state是NEW。可能的状态转换是:
Possible state transitions:
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
继续,之后执行的就是FutureTask的run方法,代码如下:
1 public void run() {
2 if (state != NEW ||
3 !UNSAFE.compareAndSwapObject(this, runnerOffset,
4 null, Thread.currentThread()))
5 return;
6 try {
7 Callable<V> c = callable;
8 if (c != null && state == NEW) {
9 V result;
10 boolean ran;
11 try {
12 result = c.call();
13 ran = true;
14 } catch (Throwable ex) {
15 result = null;
16 ran = false;
17 setException(ex);
18 }
19 if (ran)
20 set(result);
21 }
22 } finally {
23 // runner must be non-null until state is settled to
24 // prevent concurrent calls to run()
25 runner = null;
26 // state must be re-read after nulling runner to prevent
27 // leaked interrupts
28 int s = state;
29 if (s >= INTERRUPTING)
30 handlePossibleCancellationInterrupt(s);
31 }
我们看上面的代码,分析一下:
先判断state状态,如果不是NEW说明执行完毕,直接return掉。
后面使用CAS操作,判断这个任务是否已经执行,这里FutureTask有个全局的volatile runner字段,这里通过cas将当前线程指定给runner。
这里可以防止callable被执行多次。
继续往下跟,查看finishCompletion方法:
FutureTask中有一个WaiteNode单链表,当执行futureTask.get()方法时,多个线程会将等待的线程的next指向下一个想要get获取结果的线程。
finishCompletion主要就是使用Unsafe.unpark()进行唤醒操作,代码如下:
1 /**
2 * Removes and signals all waiting threads, invokes done(), and
3 * nulls out callable.
4 */
5 private void finishCompletion() {
6 // assert state > COMPLETING;
7 for (WaitNode q; (q = waiters) != null;) {
8 if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
9 for (;;) {
10 Thread t = q.thread;
11 if (t != null) {
12 q.thread = null;
13 LockSupport.unpark(t);
14 }
15 WaitNode next = q.next;
16 if (next == null)
17 break;
18 q.next = null; // unlink to help gc
19 q = next;
20 }
21 break;
22 }
23 }
25 done();
27 callable = null; // to reduce footprint
总结一下:
并发原子操作仍旧是利用的CAS原子比较,主要是unsafe类
线程的阻塞、等待、唤醒仍旧是利用类似阻塞队列的链表,里面维护一个链表结构,看链表节点定义:
1 /**
2 * Simple linked list nodes to record waiting threads in a Treiber
3 * stack. See other classes such as Phaser and SynchronousQueue
4 * for more detailed explanation.
5 */
6 static final class WaitNode {
7 volatile Thread thread;
8 volatile WaitNode next;
9 WaitNode() { thread = Thread.currentThread(); }
FutureTask的get方法是阻塞的,利用自旋实现,也是最常用的方式,代码如下:
记住一点:JDK底层很多实现都是基于下面几个技术:
JDK底层如何控制并发,保证原子性------------CAS操作
JDK并发如何阻塞、唤醒线程--------------------单向链表或者双向链表队列,队列节点waitnode就是线程的id、状态、next节点等
JDK如何实现自旋操作,比如FutureTask的get方法----------------没有那么神奇,就是for循环等待
JDK如何共享线程数据-----------voliate
JDK如何隔离线程数据-------------ThreadLocal
Future的不足
Future其实是一种模式,如下图:
future很明显,虽然是异步执行,但是无法准确知道异步任务说明时候执行完毕,如果调用get方法,在异步没有执行完成时,还是阻塞;如果频繁get检测,效率不高。
所以,我理解,使用future的get操作应该在最后一步,其他操作都已经完成了,一个可以参考的例子:
1 private int awaitDone(boolean timed, long nanos)
2 throws InterruptedException {
3 final long deadline = timed ? System.nanoTime() + nanos : 0L;
4 WaitNode q = null;
5 boolean queued = false;
6 for (;;) {
7 if (Thread.interrupted()) {
8 removeWaiter(q);
9 throw new InterruptedException();
10 }
12 int s = state;
13 if (s > COMPLETING) {
14 if (q != null)
15 q.thread = null;
16 return s;
17 }
18 else if (s == COMPLETING) // cannot time out yet
19 Thread.yield();
20 else if (q == null)
21 q = new WaitNode();
22 else if (!queued)
23 queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
24 q.next = waiters, q);
25 else if (timed) {
26 nanos = deadline - System.nanoTime();
27 if (nanos <= 0L) {
28 removeWaiter(q);
29 return state;
30 }
31 LockSupport.parkNanos(this, nanos);
32 }
33 else
34 LockSupport.park(this);
35 }
* 博客文章部分截图及内容来自于学习的书本及相应培训课程,仅做学习讨论之用,不做商业用途。
* 如有侵权,马上联系我,我立马删除对应链接。
* 备注:王子威
* 我的网易邮箱:wzw_1314_520@163.com