1.
Blériot C, Chakarov S, Ginhoux F Determinants of resident tissue macrophage identity and function.
Immunity.
2020;
52
(6):957–970. doi: 10.1016/j.immuni.2020.05.014.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Chu SY, Chou CH, Huang HD, et al. Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nat Commun, 2019, 10(1): 1524. doi: 10.1038/s41467-019-09402-8.
3.
Mojena-Medina D, Martínez-Hernández M, de la Fuente M, et al. Design, implementation, and validation of a piezoelectric device to study the effects of dynamic mechanical stimulation on cell proliferation, migration and morphology. Sensors (Basel), 2020, 20(7): 2155. doi: 10.3390/s20072155.
4.
Wang Y, Fan Y, Liu H Macrophage polarization in response to biomaterials for vascularization.
Ann Biomed Eng.
2021;
49
(9):1992–2005. doi: 10.1007/s10439-021-02832-w.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
林雁鸿, 周清清, 李春霖, 等 创伤修复机制和治疗进展
中国现代药物应用
2019;
13
(23):230–232.
[
Google Scholar
]
6.
姜琦, 李京蔓, 侯亚义 巨噬细胞参与伤口愈合和组织再生的研究进展
中国免疫学杂志
2020;
36
(6):759–766. doi: 10.3969/j.issn.1000-484X.2020.06.023.
[
CrossRef
]
[
Google Scholar
]
7.
秦烨, 张国权, 李覃, 等 巨噬细胞表型极化及其对生物材料植入的影响
生物医学工程与临床
2020;
24
(2):228–232.
[
Google Scholar
]
8.
Xu X, Gu S, Huang X, et al. The role of macrophages in the formation of hypertrophic scars and keloids. Burns Trauma, 2020, 8: tkaa006. doi: 10.1093/burnst/tkaa006.
9.
Wang LX, Zhang SX, Wu HJ, et al M2b macrophage polarization and its roles in diseases.
J Leukoc Biol.
2019;
106
(2):345–358. doi: 10.1002/JLB.3RU1018-378RR.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in cryptococcus neoformans infection. mBio, 2013, 4(3): e00264-213. doi: 10.1128/mBio.00264-13.
11.
Savitri C, Ha SS, Liao E, et al Extracellular matrices derived from different cell sources and their effect on macrophage behavior and wound healing.
J Mater Chem B.
2020;
8
(42):9744–9755. doi: 10.1039/D0TB01885F.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Aitcheson SM, Frentiu FD, Hurn SE, et al. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules, 2021, 26(16): 4917. doi: 10.3390/molecules26164917.
14.
Louiselle AE, Niemiec SM, Zgheib C, et al Macrophage polarization and diabetic wound healing.
Transl Res.
2021;
236
:109–116. doi: 10.1016/j.trsl.2021.05.006.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Wu J, Zhang L, Shi J, et al. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. EBioMedicine, 2020, 58: 102920. doi: 10.1016/j.ebiom.2020.102920.
16.
张慜晨, 高伟成 创面愈合过程中巨噬细胞调控机制的研究进展
组织工程与重建外科杂志
2019;
15
(3):204–207. doi: 10.3969/j.issn.1673-0364.2019.03.021.
[
CrossRef
]
[
Google Scholar
]
17.
Chen L, Wang J, Li S, et al The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation.
Int Wound J.
2019;
16
(2):360–369. doi: 10.1111/iwj.13041.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
Villarreal-Leal RA, Healey GD, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Adv Drug Deliv Rev, 2021, 179: 113913. doi: 10.1016/j.addr.2021.113913.
19.
Antmen E, Vrana NE, Hasirci V The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures.
Biomater Sci.
2021;
9
(24):8090–8110. doi: 10.1039/D1BM00840D.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Barthes J, Lagarrigue P, Riabov V, et al. Biofunctionalization of 3D-printed silicone implants with immunomodulatory hydrogels for controlling the innate immune response: An in vivo model of tracheal defect repair. Biomaterials, 2021, 268: 120549. doi: 10.1016/j.biomaterials.2020.120549.
21.
Novikova OA, Laktionov PP, Karpenko AA The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction.
Vascular.
2019;
27
(1):98–109. doi: 10.1177/1708538118796063.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Wolf MP, Hunziker P Atherosclerosis: insights into vascular pathobiology and outlook to novel treatments.
J Cardiovasc Transl Res.
2020;
13
(5):744–757. doi: 10.1007/s12265-020-09961-y.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Adams S, Wuescher LM, Worth R, et al Mechano-immunomodulation: mechanoresponsive changes in macrophage activity and polarization.
Ann Biomed Eng.
2019;
47
(11):2213–2231. doi: 10.1007/s10439-019-02302-4.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
陈成, 张晓容, 胡晓红, 等 单核-巨噬细胞的异质性及其对创面愈合的调控研究进展
免疫学杂志
2021;
37
(2):172–178.
[
Google Scholar
]
25.
Barnes LA, Marshall CD, Leavitt T, et al Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation.
Adv Wound Care (New Rochelle)
2018;
7
(2):47–56. doi: 10.1089/wound.2016.0709.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Le Roux AL, Quiroga X, Walani N, et al. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1779): 20180221. doi: 10.1098/rstb.2018.0221.
27.
Ku DN, Giddens DP, Zarins CK, et al Pulsatile flow and atherosclerosis in the human carotid bifurcation.
Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis.
1985;
5
(3):293–302.
[
PubMed
]
[
Google Scholar
]
28.
Stone PH, Coskun AU, Kinlay S, et al Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans:
in vivo
6-month follow-up study
.
Circulation.
2003;
108
(4):438–444. doi: 10.1161/01.CIR.0000080882.35274.AD.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
Fahy N, Menzel U, Alini M, et al. Shear and dynamic compression modulates the inflammatory phenotype of human monocytes in vitro. Front Immunol, 2019, 10: 383. doi: 10.3389/fimmu.2019.00383.
30.
Wissing TB, van Haaften EE, Koch SE, et al Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages-implications for
in situ
vascular tissue engineering
.
Biomater Sci.
2019;
8
(1):132–147.
[
PubMed
]
[
Google Scholar
]
31.
Ferrier GM, McEvoy A, Evans CE, et al The effect of cyclic pressure on human monocyte-derived macrophages
in vitro
.
J Bone Joint Surg (Br)
2000;
82
(5):755–759. doi: 10.1302/0301-620X.82B5.0820755.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
Evans CE, Mylchreest S, Andrew JG. Age of donor alters the effect of cyclic hydrostatic pressure on production by human macrophages and osteoblasts of sRANKL, OPG and RANK. BMC Musculoskelet Disord, 2006, 7: 21. doi: 10.1186/1471-2474-7-21.
33.
Zhang R, Wan J, Wang H Mechanical strain triggers differentiation of dental mesenchymal stem cells by activating osteogenesis-specific biomarkers expression.
Am J Transl Res.
2019;
11
(1):233–244.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
34.
Dong L, Song Y, Zhang Y, et al Mechanical stretch induces osteogenesis through the alternative activation of macrophages.
J Cell Physiol.
2021;
236
(9):6376–6390. doi: 10.1002/jcp.30312.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
陈咪咪, 褚耿磊, 黄迎康, 等 力学拉伸对巨噬细胞极化影响的研究
中国免疫学杂志
2018;
34
(12):1788–1793. doi: 10.3969/j.issn.1000-484X.2018.12.006.
[
CrossRef
]
[
Google Scholar
]
36.
Liang W, Ding P, Qian J, et al Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment.
Cell Tissue Res.
2021;
386
(3):585–603. doi: 10.1007/s00441-021-03533-5.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
Dziki JL, Giglio RM, Sicari BM, et al The effect of mechanical loading upon extracellular matrix bioscaffold-mediated skeletal muscle remodeling.
Tissue Eng Part A.
2018;
24
(1-2):34–46. doi: 10.1089/ten.tea.2017.0011.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
Schoenenberger AD, Tempfer H, Lehner C, et al. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials, 2020, 249: 120034. doi: 10.1016/j.biomaterials.2020.120034.
39.
Battiston KG, Labow RS, Simmons CA, et al Immunomodulatory polymeric scaffold enhances extracellular matrix production in cell co-cultures under dynamic mechanical stimulation.
Acta Biomater.
2015;
24
:74–86. doi: 10.1016/j.actbio.2015.05.038.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
Chen R, Hao Z, Wang Y, et al. Mesenchymal stem cell-immune cell interaction and related modulations for bone tissue engineering. Stem Cells Int, 2022, 2022: 7153584. doi: 10.1155/2022/7153584.
41.
Ylöstalo JH, Bartosh TJ, Coble K, et al Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype.
Stem Cells.
2012;
30
(10):2283–2296. doi: 10.1002/stem.1191.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
Ueno M, Lo CW, Barati D, et al Interleukin-4 overexpressing mesenchymal stem cells within gelatin-based microribbon hydrogels enhance bone healing in a murine long bone critical-size defect model.
J Biomed Mater Res A.
2020;
108
(11):2240–2250. doi: 10.1002/jbm.a.36982.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
Xia Y, Rao L, Yao H, et al. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater, 2020, 32(40): e2002054. doi: 10.1002/adma.202002054.
44.
Dervan A, Franchi A, Almeida-Gonzalez FR, et al. Biomaterial and therapeutic approaches for the manipulation of macrophage phenotype in peripheral and central nerve repair. Pharmaceutics, 2021, 13(12): 2161. doi: 10.3390/pharmaceutics13122161.
45.
Martin KE, García AJ Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies.
Acta Biomater.
2021;
133
:4–16. doi: 10.1016/j.actbio.2021.03.038.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]