import
pandas
as
pd
reviewsfileloc
=
"/home/haida_niejie/work/xhx/zahose/recommender/mmnet/mmnet/data/google_local/reviews.clean.json"
f
=
codecs
.
open
(
reviewsfileloc
,
"r"
,
encoding
=
"UTF-8"
)
count
=
0
y
=
open
(
"sample.txt"
,
"w"
,
encoding
=
"UTF-8"
,
newline
=
""
)
for
line
in
f
:
z
=
line
.
encode
(
'ascii'
)
.
decode
(
'unicode-escape'
)
z
=
z
.
replace
(
": u"
,
":"
)
z
=
z
.
replace
(
"[u"
,
"["
)
z
=
z
.
replace
(
', u'
,
','
)
z
=
z
.
replace
(
"\n"
,
''
)
z
=
z
.
replace
(
"}"
,
"}\n"
)
z
=
z
.
replace
(
'"'
,
'\\"'
)
z
=
z
.
replace
(
"'rating':"
,
'"rating":'
)
z
=
z
.
replace
(
"'reviewerName':'"
,
'"reviewerName":"'
)
z
=
z
.
replace
(
"', '"
,
'", "'
)
z
=
z
.
replace
(
"':'"
,
'":"'
)
z
=
z
.
replace
(
"': ['"
,
'": ["'
)
z
=
z
.
replace
(
"'], '"
,
'"], "'
)
z
=
z
.
replace
(
"unixReviewTime': "
,
'unixReviewTime": '
)
z
=
z
.
replace
(
", 'reviewTime"
,
', "reviewTime'
)
z
=
z
.
replace
(
"reviewText':"
,
'reviewText":'
)
z
=
z
.
replace
(
"','"
,
'","'
)
z
=
z
.
replace
(
'.\\", '
,
'.", '
)
z
=
z
.
replace
(
'?\\", '
,
'?", '
)
z
=
z
.
replace
(
"'categories"
,
'"categories'
)
z
=
z
.
replace
(
'":\\"'
,
'":"'
)
z
=
z
.
replace
(
'\\", "'
,
'", "'
)
z
=
z
.
replace
(
"Clothing Store',"
,
'Clothing Store",'
)
z
=
z
.
replace
(
'",\\"'
,
'","'
)
z
=
z
.
replace
(
'\\",\\"'
,
'","'
)
z
=
z
.
replace
(
'\\"],'
,
'"],'
)
z
=
z
.
replace
(
'\\","'
,
'","'
)
z
=
z
.
replace
(
", 'gPlusPlaceId"
,
', "gPlusPlaceId'
)
z
=
z
.
replace
(
"categories':"
,
'categories":'
)
z
=
z
.
replace
(
'": [\\"'
,
'": ["'
)
z
=
z
.
replace
(
"'}"
,
'"}'
)
z
=
z
.
replace
(
"'reviewerName':"
,
'"reviewerName":'
)
z
=
z
.
replace
(
", 'reviewText"
,
', "reviewText'
)
z
=
z
.
replace
(
'":\\"'
,
'":"'
)
z
=
z
.
replace
(
'\\", "'
,
'", "'
)
z
=
z
.
replace
(
'\\"refrigerator\\"'
,
"'refrigerator'"
)
y
.
write
(
z
)
count
=
count
+
1
if
count
==
10
:
break
y
.
close
(
)
f
.
close
(
)
f
=
codecs
.
open
(
"sample.txt"
,
"r"
,
encoding
=
"UTF-8"
)
y
=
open
(
"file_without_line_breaks.txt"
,
"w"
,
encoding
=
"UTF-8"
,
newline
=
"\n"
)
temp
=
""
count
=
0
for
line
in
f
:
count
=
count
+
1
if
len
(
line
)
>
1
:
if
line
[
-
2
]
==
'}'
:
temp
=
temp
.
strip
(
'\r\n'
)
+
''
+
line
y
.
write
(
temp
,
)
if
count
==
10
:
break
temp
=
""
elif
line
[
-
2
]
!=
'}'
:
temp
=
temp
+
line
.
strip
(
'\r\n'
)
x
=
codecs
.
open
(
"file_without_line_breaks.txt"
,
"r"
,
encoding
=
"UTF-8"
)
count
=
0
data
=
[
]
for
line
in
x
:
count
=
count
+
1
print
(
count
)
if
(
line
.
find
(
"rating"
)
>=
0
and
line
.
find
(
"gPlusUserId"
)
>=
0
)
:
line
.
replace
(
"'rating'"
,
'"rating"'
)
line
.
replace
(
"'reviewerName'"
,
'"reviewerName"'
)
line
.
replace
(
"'reviewText'"
,
'"reviewText"'
)
line
.
replace
(
"'categories'"
,
'"categories"'
)
line
.
replace
(
"'gPlusPlaceId'"
,
'"gPlusPlaceId"'
)
line
.
replace
(
"'unixReviewTime'"
,
'"unixReviewTime"'
)
m
=
re
.
search
(
'"rating":(.+?), "reviewerName"'
,
line
)
n
=
re
.
search
(
'"reviewerName":(.+?), "reviewText"'
,
line
)
o
=
re
.
search
(
'"reviewText":(.+?), "categories"'
,
line
)
p
=
re
.
search
(
'"categories":(.+?), "gPlusPlaceId"'
,
line
)
q
=
re
.
search
(
'"gPlusPlaceId":(.+?), "unixReviewTime"'
,
line
)
r
=
re
.
search
(
'"unixReviewTime":(.+?), "reviewTime'
,
line
)
s
=
re
.
search
(
'"reviewTime(.+?)gPlusUserId"'
,
line
)
t
=
re
.
search
(
'gPlusUserId":"(.+?)"'
,
line
)
try
:
output
=
m
.
group
(
1
)
,
n
.
group
(
1
)
,
o
.
group
(
1
)
,
detect
(
o
.
group
(
1
)
)
,
p
.
group
(
1
)
,
q
.
group
(
1
)
,
r
.
group
(
1
)
,
s
.
group
(
1
)
,
t
.
group
(
1
)
data
.
append
(
output
)
except
:
language
=
"error"
print
(
"This row throws and error:"
,
o
.
group
(
1
)
)
result
=
pd
.
DataFrame
(
data
,
columns
=
[
'Rating'
,
'ReviewerName'
,
'ReviewerText'
,
'Lang'
,
'Categories'
,
'gPlusPlaceId'
,
'UnixReviewTime'
,
'ReviewTime'
,
'gPlusUserId'
]
)
result
.
to_csv
(
"Review_sentiment.csv"
)
result
[
'ReviewerText'
]
=
result
[
'ReviewerText'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
[
'ReviewerName'
]
=
result
[
'ReviewerName'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
[
'Lang'
]
=
result
[
'Lang'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
[
'Categories'
]
=
result
[
'Categories'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
[
'gPlusPlaceId'
]
=
result
[
'gPlusPlaceId'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
[
'UnixReviewTime'
]
=
result
[
'UnixReviewTime'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
[
'ReviewTime'
]
=
result
[
'ReviewTime'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
[
'gPlusUserId'
]
=
result
[
'gPlusUserId'
]
.
replace
(
{
'"'
:
''
}
,
regex
=
True
)
result
=
pd
.
DataFrame
(
result
,
columns
=
[
'Rating'
,
'ReviewerName'
,
'ReviewerText'
,
'Lang'
,
'Categories'
,
'gPlusPlaceId'
,
'UnixReviewTime'
,
'ReviewTime'
,
'gPlusUserId'
]
)
result
.
to_csv
(
"Reviews.csv"
)
近期在对googal local代码过程中,借用github上某一博主处理代码时出现代码某一块直接跳过不执行的情况,具体问题为在代码运行过程中,有一块代码直接跳过了,没有执行,跳过的代码块为:
for line in x:
count = count+1
print(count)
if(line.find("rating")>=0 and line.find("gPlusUserId")>=0):
line.replace("'rating'",'"rating"')
line.replace("'reviewerName'",'"reviewerName"')
line.replace("'reviewText'",'"reviewText"')
line.replace("'categories'",'"categories"')
line.replace("'gPlusPlaceId'",'"gPlusPlaceId"')
line.replace("'unixReviewTime'",'"unixReviewTime"')
m = re.search('"rating":(.+?), "reviewerName"', line)
n = re.search('"reviewerName":(.+?), "reviewText"', line)
o = re.search('"reviewText":(.+?), "categories"', line)
p = re.search('"categories":(.+?), "gPlusPlaceId"', line)
q = re.search('"gPlusPlaceId":(.+?), "unixReviewTime"', line)
r = re.search('"unixReviewTime":(.+?), "reviewTime', line)
s = re.search('"reviewTime(.+?)gPlusUserId"', line)
t = re.search('gPlusUserId":"(.+?)"', line)
try:
output= m.group(1),n.group(1),o.group(1),detect(o.group(1)),p.group(1),q.group(1),r.group(1),s.group(1),t.group(1)
data.append(output)
except:
language = "error"
print("This row throws and error:", o.group(1))
该代码块在运行过程中没有运行,经过改进将在循环上面加上代码
y.close()
f.close()
循环正常进行,原因是上面写入文件之后没有关闭,代码在下面直接读入,影响了文件的读入,但是具体原理还没有弄明白,希望有懂得大神能够帮忙解决这个原理问题。
源代码出处
当我们提到一门编程语言的效率时:通常有两层意思,第一是开发效率,这是对程序员而言,完成编码所需要的时间;另一个是运行效率,这是对计算机而言,完成计算任务所需要的时间。编码效率和运行效率往往是鱼与熊掌的关系,是很难同时兼顾的。不同的语言会有不同的侧重,python语言毫无疑问更在乎编码效率,life is short,we use python。
虽然使用python的编程人员都应该接受其运行效率低的事实,但python在越多越来的领域都有广泛应用,比如科学计算 、web服务器等。程序员当然也希望python能够运算得更快,希望python可以更强大。
首先,python相比其他语言具体有多慢,
for语句Python中for语句的特性是一种遍历循环的方法,利用该特性可以更灵活地进行循环设计。for循环的理解:该语句将遍历结构体中的元素一次赋值给循环变量,并执行一次语句块,因此循环次数理论上是有限的。下面通过代码理解几种for循环用法。print('常规遍历:')
for i in range(5):
print(i)常规遍历print('区间数值遍历:')
for i in ra...
Python中for的用法跟C++有点区别,首先是把列表的元素传递给变量,并存储到这个变量中,然后循环打印存储在变量中的元素,别忘记了还有一个冒号,如果要循环输出,需要对后面的代码进行缩进Tab,没有缩进的话,就不属于for循环的范围。
for 变量名 in 列表名
.....语句
print(变量名)
这篇文章主要介绍了如何获取Python简单for循环索引,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
Python的for循环相比其他语言而言更加简单,比如经常会有如下这样类似的例子。我们可以直接对列表进行遍历,获取列表的某个元素,并对这个元素进行相应的操作。
testList = ['nice', 'to', 'meet', 'you']
for x in testList:
print(x)
运行结果如下:
但是,如果我们在上面的for循环中,除了想要获取对应元素x以外,还想知道对于这个元素在列表中的
不懂为啥第一次运行会出错,错了再运行一遍for就出来了!
以上这篇python实现画循环圆就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。
您可能感兴趣的文章:Python实现的圆形绘制(画圆)示例python实现画圆功能简单实现python画圆功能Python 用turtle实现用正方形画圆的例子
private static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
whiteMouseSortLogic();
private static void whiteMouseSortLogic() {
System.out.println("请输入小白鼠只数:");
int x = sc.nextInt();
张浩Java考试成绩未达到自己的目标。为了表明自己勤奋学习的决心,他决定写一百遍“好好学习,天天向上!”根据前面学习的内容我们知道System.out.println(“好好学习,天天向上!”)可以将这句话打印出来,但是现在是要打印100次,那是不是我们需要写100次呢?答案肯定是否定的,在java中我们要避免写重读的代码,我们要尽量“偷懒”让代码能重复使用。那如何才能写一次输出语句,让它运行100次呢?接下来我们就要学习流程控制中的--循环结构。
一、什么是循环结构
1.循环简单理解就是重读
要在 Python 中跳过 for 循环,您可以使用 `continue` 关键字。当代码执行到 `continue` 语句时,它会立即跳过当前循环迭代并继续下一个迭代。
以下是一个示例:
```python
numbers = [1, 2, 3, 4, 5]
for num in numbers:
if num == 3:
continue
print(num)
在上面的代码中,当循环迭代到数字 3 时,`continue` 语句会跳过该迭代,不执行后续的打印语句,然后继续下一个迭代。因此,输出将是:
希望这可以帮助到您!如果您有任何其他问题,请随时提问。
sklearn.exceptions.NotFittedError: This DecisionTreeClassifier instance is not fitted yet. Call ‘fit
Refining Graph Representation for Cross-DomainRecommendation Based on EdgePruning in Latent Space笔记
sklearn.exceptions.NotFittedError: This DecisionTreeClassifier instance is not fitted yet. Call ‘fit
XinyuRen_:
Refining Graph Representation for Cross-DomainRecommendation Based on EdgePruning in Latent Space笔记
jupyterlab误删.py文件恢复
循环中嵌套条件语句,print的内容不显示