git
clone
https://github.com/ggerganov/llama.cpp
cd
llama.cpp
python -m pip install torch numpy sentencepiece
mkdir
-p models/7B/
wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/resolve/main/consolidated.00.pth
wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/raw/main/params.json
wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/raw/main/checklist.chk
wget -P models/ https://huggingface.co/nyanko7/LLaMA-7B/resolve/main/tokenizer.model
python convert-pth-to-ggml.py models/7B/ 1
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
./main -m ./models/7B/ggml-model-q4_0.bin \
-t 8 \
-n 128 \
-p
'I Have a Dream'
目前已知的模型有:
7B: 1个模型文件,占用空间 13GB,转换后总占用空间 30GB
13B: 2个模型文件,占用空间 25GB,转换后总占用空间 60GB
30B: 4个模型文件,占用空间 61GB,转换后总占用空间 120GB
65B: 8个模型文件,占用空间 122GB,转换后总占用空间 240GB
每个模型的内存占用空间大小约为
4GB
,根据自己机器内存大小选择合适的模型
Meta并没有公开模型的hash值,所以请自行判断是否要运行
目前已知的泄漏地址有以下几个:
官方库的PR
有人在官方库上
故意不小心
提交了模型的磁力链接
magnet:?xt=urn:btih:ZXXDAUWYLRUXXBHUYEMS6Q5CE5WA3LVA&dn=LLaMA
llma-dl 库
new bing找到的库,里面用的好像是作者自己的API接口
curl -o- https://raw.githubusercontent.com/shawwn/llama-dl/56f50b96072f42fb2520b1ad5a1d6ef30351f23c/llama.sh | bash
或者通过磁力链接
magnet:?xt=urn:btih:b8287ebfa04f879b048d4d4404108cf3e8014352&dn=LLaMA&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337%2fannounce
huggingface.co
目前找到的只有7B 和 65B的模型
huggingface.co/nyanko7/LLa…
huggingface.co/datasets/ny…
软/硬件依赖
笔者机器硬件是 Apple M1 8-core 16GB RAM
系统版本是 12.5.1
clang 版本如下
❯ c++ -v
Apple clang version 14.0.0 (clang-1400.0.29.102)
Target: arm64-apple-darwin21.6.0
Thread model: posix
InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
Python
Python 目前是基于3.10 版本
如果没有对应的python版本,可以通过 pipenv 或者 conda 创建一个虚拟环境出来
pipenv shell --python 3.10
conda create -n llama python=3.10
conda activate llama
pip install torch numpy sentencepiece
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
编译出 main
和 quantize
确保模型已经下载到对应的文件夹内
下面以 7B 模型举例子
ls ./models
tokenizer.model
将模型转换为 ggml FP16格式
python convert-pth-to-ggml.py models/7B/ 1
这一步会生成一个13GB的 models/7B/ggml-model-f16.bin
文件
下一步将模型量化为4-bit
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
如果你的模型数量有多个,需要分批次来处理
比如13B的两个模型文件
./quantize ./models/13B/ggml-model-f16.bin ./models/13B/ggml-model-q4_0.bin 2
./quantize ./models/13B/ggml-model-f16.bin.1 ./models/13B/ggml-model-q4_0.bin.1 2
享受AI的时刻
笔者用的是13B模型,-t 是线程数量,-n 是token数量 , -p 是你输入的内容
❯ ./main -m models/13B/ggml-model-q4_0.bin -t 8 -n 409600 -p 'I Have a Dream'
main: seed = 1678677633
llama_model_load: loading model from 'models/13B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 5120
llama_model_load: n_mult = 256
llama_model_load: n_head = 40
llama_model_load: n_layer = 40
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 13824
llama_model_load: n_parts = 2
llama_model_load: ggml ctx size = 8559.49 MB
llama_model_load: memory_size = 800.00 MB, n_mem = 20480
llama_model_load: loading model part 1/2 from 'models/13B/ggml-model-q4_0.bin'
llama_model_load: ............................................. done
llama_model_load: model size = 3880.49 MB / num tensors = 363
llama_model_load: loading model part 2/2 from 'models/13B/ggml-model-q4_0.bin.1'
llama_model_load: ............................................. done
llama_model_load: model size = 3880.49 MB / num tensors = 363
main: prompt: 'I Have a Dream'
main: number of tokens in prompt = 5
1 -> ''
29902 -> 'I'
6975 -> ' Have'
263 -> ' a'
16814 -> ' Dream'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
I Have a Dream: A Handbook for Teachers and Students on Martin Luther King, Jr.
Culture is always changing and being influenced by the people around us who we can observe. Ways of thinking about culture are more important than which one you believe in because it could be dangerous if your way off believing in something that isn’t true but also that means there will be changes over time so everyone should learn these things when they start school
Added: Sun, April 29th 2018 [end of text]
main: mem per token = 22439492 bytes
main: load time = 4974.55 ms
main: sample time = 300.81 ms
main: predict time = 90728.84 ms / 824.81 ms per token
main: total time = 98585.49 ms
Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp
ggerganov/llama.cpp