添加链接
link之家
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
standardScaler = preprocessing.StandardScaler()
for i in x.columns:
    scale_param = standardScaler.fit(x[[i]])
    x[i] = standardScaler.fit_transform(x[[i]],scale_param)

特征重要性

import matplotlib.pyplot as plt
plt.figure(figsize=(12,6))
lgb.plot_importance(model, max_num_features=30)
plt.title("LightGBM Featurer Importances")
plt.show()
def plot_importance(x,model):
    features = model.feature_importances_
    labels = x.columns
    _ = {'labels':labels,'features':features}
    df = pd.DataFrame(_)
    df= df.set_index('labels').sort_values(by='features',ascending=False)
    df.plot.bar(rot=45)
                    scale针对df做scale错误????‍♂️方式直接针对df整个进行scale,feature的名字会被抹掉。正确方式特征重要性调包import matplotlib.pyplot as pltplt.figure(figsize=(12,6))lgb.plot_importance(model, max_num_features=30)plt.title("LightGBM ...
				
特征重要性评分是一种为输入特征评分的手段,其依据是输入特征在预测目标变量过程中的有用程度。 特征重要性有许多类型和来源,尽管有许多比较常见,比如说统计相关性得分,线性模型的部分系数,基于决策树的特征重要性和经过随机排序得到重要性得分。 特征重要性在预测建模项目中起着重要作用,包括提供对数据、模型的见解,以及如何降维和选择特征,从而提高预测模型的的效率和有效性。 在本教程中,我将会阐述用于python机器学习的特征重要性。完成本教程后,你将会知道: 特征重要性在预测建模中的作用 如何计算和查看来自线
作者CSDN:进击的西西弗斯 本文链接:https://blog.csdn.net/qq_42216093/article/details/116994199 版权声明:本文为作者原创文章,转载需征得作者同意 如今机器学习炙手可热,而对于数据分析师或是从事数据相关的工作者而言,Python是一种最常用的机器学习实现方式。本文将从实践的角度出发,以经典的泰坦尼克号幸存者数据集为例,以sklearn为主要工具,全面细致地讲解Python机器学习建模的标准化流程。 1. 特征工程 特征工程,就是将原..
预处理:python实现用随机森林评估特征重要性 随机森林根据森林中所有决策树计算平均不纯度的减少来测量特征重要性,而不作任何数据是线性可分或不可分的假设。 import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler 经历导入数据-预处理-建模-得分-预测 但是总觉得少了点什么,虽然我们建模的目的是进行预测,但是我们想要知道的另一个信息是变量的重要性,在线性模型中,我们有截距和斜率参数,但是其他机器学习算法,如决策树和随机森林,我们貌似没有这样的参数 值得庆幸的是我们有变量重要性指标feature_importances_,但是就目前而言,这个参数好...
我们建立模型之后,想要直观了解模型中字段的重要性,一般我们使用barh/bar来绘制图形。这里我们以决策树为例,使用feature_importances_计算特征重要性。 (关于特征重要性的具体计算逻辑,我们会在后面的文章中做详细介绍) import numpy as np import pandas as pd from pandas import DataFrame as df from sklearn.datasets import load_boston from sklearn.datasets
好的,我理解了你的要求。关于Python数据预处理,下面是我的回答: Python是一种非常流行的编程语言,也被广泛用于数据科学领域。在进行数据分析前,通常需要进行数据预处理,以确保数据质量和准确性。 数据预处理的步骤通常包括数据清洗、数据转换、数据集成和数据归约等。其中,数据清洗是指对数据中的缺失值、异常值、重复值等进行处理;数据转换是指对数据进行标准化、规范化、离散化等处理;数据集成是指将多个数据源进行整合,形成一个完整的数据集;数据归约是指对数据进行降维处理,以便于后续分析。 Python提供了很多数据预处理的工具和库,比如NumPy、Pandas、Scikit-learn等,这些工具可以帮助我们更轻松地进行数据预处理和分析。 以上就是我关于Python数据预处理的回答,希望对你有所帮助。 ### 回答2: Python数据预处理是指对原始数据进行清洗、转换、整理和加工的过程,以便进行后续的数据分析和建模数据预处理是数据科学和机器学习中不可缺少的一环,其目的是提高数据的质量、减少错误和不确定性的影响,使数据更具可靠性和可用性。 在Python中,有许多工具和技术可用于数据预处理。下面是几个常用的Python数据预处理方法: 1. 数据清洗:使用Python的数据处理库,如Pandas,可以删除重复值、处理缺失值、处理异常值和离群值等。可以使用drop_duplicates()函数删除数据中的重复值,使用dropna()函数处理缺失值,并使用isnull()和notnull()函数识别缺失值。 2. 数据转换:数据转换是将数据从一种形式转换为另一种形式。例如,可以使用Python中的函数将分类变量转换为数值表示,或使用独热编码(one-hot encoding)将分类变量转换为虚拟变量。 3. 特征缩放:特征缩放是将不同尺度的特征转换为统一的尺度。常见的特征缩放方法包括标准化(使用Z-score),归一化(将特征缩放到0-1范围)和正则化(将特征缩放到单位范数)。 4. 特征选择:特征选择是从原始数据中选择最相关或最有用的特征。可以使用Python中的特征选择库,如Scikit-learn,通过统计方法、特征重要性评估或正则化方法来选择特征。 5. 特征构造:特征构造是从现有特征中创建新的特征。可以使用Python中的函数和操作符来创建新的特征,例如计算两个特征的和、差或乘积。 6. 数据集划分:数据集划分是将原始数据集划分为训练集和测试集。可以使用Python中的库,如Scikit-learn,提供的函数和方法进行数据集划分,常见的划分方法包括随机划分和交叉验证。 Python的数据处理库和工具使得数据预处理变得更加简单和高效。通过将这些方法结合起来,可以提高数据预处理的速度和准确性,从而为后续的数据分析和建模提供可靠的基础。 ### 回答3: Python数据预处理是指在数据分析和机器学习过程中使用Python编程语言对原始数据进行清洗、转换和重塑的过程。数据预处理是数据分析的关键步骤,它可以帮助我们准备好的、适合用于建模和分析的数据集。 首先,数据预处理可以包括数据清洗。在数据清洗过程中,我们可以处理缺失的数据、异常值和重复值。Python提供了丰富的库和函数,可以快速有效地进行数据清洗操作,如使用pandas库进行数据筛选、填充缺失值和删除异常值。 其次,数据预处理还可以进行特征选择和特征变换。通过选择有意义的特征,可以提高模型预测的准确性和效率。Python中的scikit-learn库提供了多种特征选择方法,如方差阈值、相关性分析和递归特征消除等。另外,我们还可以对数据进行特征变换,如标准化、归一化和主成分分析等,以改善模型的性能。 最后,数据预处理还可以进行数据集划分和数据集合并。在机器学习任务中,将数据集分成训练集和测试集是常见的操作,用于训练和评估模型。Python中的scikit-learn库可以很方便地进行数据集划分。此外,我们还可以使用pandas库对不同数据集进行合并,以便于进行进一步的分析和建模。 总之,Python数据预处理是实现数据清洗、特征选择、特征变换和数据集操作的重要步骤。Python提供了丰富的库和函数,可以帮助我们高效地进行数据预处理,为后续的数据分析和机器学习任务提供可靠的数据基础。